INSTRUCTOR: Prof. John Wilkerson
238 Phillips Hall.
Phone: 962-1384
Email: jfw@unc.edu

LECTURES: Wed-Fri from 11:30 to 12:45 PM, Phillips Hall 220.
(May hold some lectures in Phillips Hall 006)

OFFICE HOURS: TBD and by appointment.

PREREQUISITE: Physics 543 (or equivalent) & Physics 721
or permission of the instructor.

SYNOPSIS: The intent of the course is to provide an overview of fundamental symmetries and neutrinos in nuclear physics. Many of the topics of interest are aimed at probing for physics beyond the standard model of fundamental interactions, often using the nucleus as a laboratory to make precision tests. The course will be enriched by selected readings from foundation papers in the published literature. These examples will prove interesting while motivating the underlying nuclear and particle physics. The plan is to on average cover a foundations related topic every week, either in class or as part of the homework.

The exact content of the course will be tailored to address the interests and experience levels of the students.

The course is not a traditional lecture course, but something of a hybrid, with about 2/3 of the time devoted to lectures and 1/3 to discussions. For the discussions you will read published research papers (some old and some new). We will discuss these papers in class as a group. To help you as you’re reading each paper, I will provide a set of “guiding questions”. For each assigned paper discussed in class, students will be asked to present a summary of the paper and start the discussion.

GOALS:
1. Provide an overview of fundamental symmetries and the weak interaction.
2. Explore the use of fundamental symmetry measurements to test the standard model and beyond.
4. Apply your knowledge of Quantum Mechanics.
5. Strengthen ability to read/understand/interpret published literature.

6. Prepare and present an APS style talk.

COURSE TEXTBOOKS:
There is no single textbook that covers all of the topics in the syllabus. I have placed the available texts (a couple are apparently missing) on reserve in the Library. Please refer to the text and references information sheet.

LECTURE NOTES:
Slides or material shown during class will be made available on the course webpage.

COURSE ASSIGNMENTS, EXAMINATIONS, GRADING:

Reading: Suggested reading assignments from text(s), handouts, or published papers will be assigned before each lecture and can be found on the course information web page. For the text assignments, if a reading from a particular author is marked in **bold**, this is an indication that I have found it to be particularly relevant to the lecture subject.

Homework: On average one problem set every two weeks. Students are expected to work independently on assignments related to foundational papers.

In Class: Participation and Discussions – You are expected to participate in the class discussions. You will also be asked to “present” a summary and help lead the discussion of one of the weekly research papers that we will be reading.

Project: An independent and original research paper on a topic of your selection. You will give an APS style 10 minute talk at the end of the semester. Details on the paper/project and a list of potential topics will be updated later in the semester.

Exams: None.

Grades:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>60%</td>
</tr>
<tr>
<td>Participation</td>
<td>20%</td>
</tr>
<tr>
<td>Paper/Talk</td>
<td>20%</td>
</tr>
</tbody>
</table>
Physics 861 Fundamental Symmetries and Neutrinos Fall 2014
in Nuclear Physics

Syllabus
Current Revision: October 01, 2014

Nuclear Properties and Interactions (review) [1]
 Global properties
 Decay modes
 Interactions
 Symmetries of the nuclear Hamiltonian

Nuclear Models [2]
 Fermi Gas Model
 Shell Model
 Foundations Topic: Nuclear Shell Model
 Collective Model
 Foundations Topic: Nuclear Collective Model

Symmetries and Conservation Laws [6]
 Additive Conservation Laws
 Angular momentum and isospin
 Discrete Symmetries, Parity
 Foundations Topic: Parity Violation
 Foundations Topic: Neutrino Helicity
 Angular momentum and isospin
 Dynamical symmetries, Charge Conjugation
 Foundations Topic: The neutral Kaon
 CP Violation
 Foundations Topic: CP Violation

Interactions, Field Theories, and the Standard Model [5]
 Klein-Gordon Field
 The Dirac Field
 Foundations Topic: Dirac
 Symmetry considerations
 Interacting Fields
 Foundations Topic: Yang-Mills Theory
 Electroweak theory
 Spontaneous symmetry breaking – the Higgs
 Foundations Topic: Weinberg

The Weak Interaction [3]
 Beta-decay
 The Current–Current Interaction
 Weak Current of Leptons
 The Weak Coupling Constant
 Weak Decays of Quarks and the CKM Matrix
 Weak Currents in Nuclear Physics
Beyond the Standard Model - Neutrinos [5]

- Neutrino Mixing and MNSP Matrix
- Neutrino Oscillations in vacuum and matter
- Majorana versus Dirac Neutrinos
- Experimental evidence that neutrinos have mass and oscillate
 - Solar neutrinos
 - Atmospheric neutrinos
 - Reactor neutrinos
 - Accelerator neutrinos

Constraints on Neutrino Mass

- Neutrinoless Double Beta Decay – Case Study
 - Nuclear Matrix Elements
 - (Foundations Topic: Nuclear Shell Model)

Sterile Neutrinos

Future Perspectives

Beyond the Standard Model – Fundamental Symmetry tests [5]

- Baryon number violation
- Parity violation (J-Lab)
- Charged Lepton flavor violation
- EDM searches
- Muon g-2

Connections to Cosmology [2]

- Observational Cosmology
- ΛCDM model
- Evidence for Dark Matter
- Neutrinos as warm or hot dark matter
- Non-standard model particles

- Dark Matter Models and Interactions
- Spin-independent and spin dependent interactions
- WIMP, Axions
- Direct searches - Coherent scattering on nuclei
- Indirect searches
- Dark Energy and Vacuum energy