UNC-CH Nuclear Colloquium
Saori Pastore, LANL
“Fundamental Physics with Electroweak Probes of Nuclei”
The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear structure and reactions with photons, electrons and neutrinos have successfully explained experimental data, yielding a complex picture of the way nuclei interact with those particles. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electromagnetic and weak-interaction properties of nuclei, including electromagnetic moments and transitions between low-lying nuclear states, along with studies of single- and double-beta decay rates. I will illustrate the key features required to explain the available experimental data, and present a novel framework to calculate neutrino-nucleus cross sections.