
1 
 

Introduction to Spacetime diagrams in Special Relativity 

R. Henning, S. Jeglinski, D. Morse, A. Oldenburg, A. Erickcek 
 
In his original paper in 1905, Einstein used several thought (“gedanken”) experiments to 
illustrate the implications of the constancy of the speed of light.  Other physicists found 
that it was easier to visualize the concepts of relativity and developed a variety of 
graphing techniques. We will use a simple graphing technique called a Minkowski 
spacetime diagram, or simply a “spacetime diagram,” to illustrate and understand 
complex scenarios in special relativity. This diagram was originally developed by 
Hermann Minkowski in 1908 and is useful for objects that move at a substantial fraction 
of the speed of light.   
 
Background. We are interested in the dynamics of a system of objects: where objects are 
and where they are going at any given time (i.e., position and velocity). Often the best 
way to visualize the motion of the objects is by making a plot of distance vs time. 
Consider the following two scenarios: 
 

i. Tom throws a red ball with a horizontal (x) component of velocity of 3 m/s at the 
same time as he starts a stopwatch.  

ii. Tom notices1 a green firecracker explode at x = 1 m and at t = 2 s after he starts 
his stopwatch.  

 
 
These two scenarios can be described on a plot of x 
vs t (right). The coordinate system can be described 
as “Tom’s rest, or reference, frame.” Tom considers 
himself to be at rest in his own frame, but nothing is 
otherwise known about how Tom may be moving 
with respect to another frame. 
 
 
Conceptual Questions to Ponder                            
(see answers at the end): 
 

• What is the physical significance of the origin in the plot? 
• How would Tom’s location at various times on the plot be represented? 

 
  

 
1 The meaning of the word “notice” seems unambiguous, but as we will see, this is true only in the 
“classical” viewpoint. When we begin speaking about special relativity later in the document, we will 
distinguish the difference between the time a person sees (notices) the results of an event, and the location 
and time of the event itself.        
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Let’s now assume Tom sees his good friend Sarah cruising down the road at 2 m/s 
towards him She is moving along his x-axis and the red ball he threw is on a collision 
course with her. As it happens, Sarah is 6 m away from Tom when he throws the ball, 
and it takes her one second to react after he has thrown the red ball, at which time she 
starts her own stopwatch. What does the above distance vs time plot look like from 
Sarah’s frame of reference?  
 
Before we answer this question, it 
will help to superimpose Sarah’s 
motion onto Tom’s plot: 
 
From Tom’s perspective, Sarah (blue) 
is moving at –2 m/s as the red ball he 
threw moves in her direction at +3 
m/s (check the slopes!). From simple 
constant-acceleration kinematics, we 
find that the red ball meets Sarah at       
(t = 1.2 s, x = 3.6 m) in Tom’s 
reference frame. Sarah continues to 
approach and reaches Tom’s location 
at t = 3 s. 
 
In contrast, Sarah considers herself to 
be at rest. She sees Tom moving in 
her direction at 2 m/s and the red ball 
moving in her direction at 2+3=5 m/s. 
 
To prove this result mathematically, 
we note a connection to the relative 
motion vector equation: 

 
  
 
It is traditional to distinguish the two reference frames by labeling one with primes; 
Tom’s reference frame is referred to as S, and Sarah’s as S'. Assign the red ball to 
subscript 1, and subscripts 2 and 3 to the respective reference frames. Then,  
 

 
 
We can now think about drawing Sarah’s plot, but we need more information to lock it 
down: Tom’s “time zero” is one second before Sarah’s “time zero.” This means that the 
numbers on Sarah’s stopwatch lag the same numbers on Tom’s stopwatch. To properly 
locate this relationship on Sarah’s plot, we note that the red ball is 1 m away from her 
when she starts her stopwatch. Using the same constant-acceleration kinematics as in 
Tom’s case, we find that the red ball meets Sarah at (t' = 0.2 s, x' = 0 m) in Sarah’s 
coordinate system. 

 
v13 =

v12 +
v23

 
v1S =

v1S ' +
vS 'S → +3 m/s = v1S '  + (–2 m/s) → v1S ' =  +5 m/s
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To complete the picture, Sarah 
notices the firecracker at t' = 1 s, 
as opposed to Tom’s t = 2 s 
(because she started her 
stopwatch later). 
 
The firecracker is 1 m in front 
of Tom and thus 5 m in front of 
Sarah when he throws the red 
ball, but it doesn’t explode until 
2 s after. During this time, Sarah 
has moved 4 m in Tom’s 
direction. The firecracker is 
therefore at her 1 m mark 
according to Sarah.  
 
The final result from Sarah’s 
frame of reference is shown to 
the right. In this case, the blue 
trajectory is Tom’s motion in 
Sarah’s frame. 
 
In either reference frame, the 2 
m/s value describes the relative 
speed of the reference frames 
(vS’S). In this example, this 
relative speed is a “closing” 
speed. Notice that the same red 
ball appears to have different 
speeds in each reference frame, 
because Tom and Sarah are 
moving with respect to each other.  
      
Sarah’s plot depicts exactly the same occurrences as Tom’s plot, even though the plots 
look quite different. These occurrences are what we will soon call “events.” The 
conversion of the description from one reference frame (Tom’s) to another (Sarah’s) is 
known as a “Galilean transformation.” The following features characterize this 
transformation: 
 

• The frames of reference are moving with respect to each other at a constant velocity. 
• The position coordinate (x) of an event in one frame will typically have a different 

position coordinate (x') in another frame. 
• The time coordinate (t) of an event in one frame may have a different time 

coordinate (t') in another frame, but the passage of time will be the same in both 
frames (Δt = Δt'). 

• Objects with a velocity in one frame will have a different velocity in another frame.  
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The Galilean Transformation comprised our understanding of relative motion and how 
measurements compare between frames up until 1905, when Einstein first published his 
paper on special relativity. In most applications, Galilean transformations remain correct 
to a very high accuracy; however, one fundamental observational fact, that the speed of 
light is measured to be the same in all reference frames, forces us to modify the Galilean 
ideas and gives rise to interesting and non-intuitive results when two reference frames are 
moving relative to one another at speeds significant compared to the speed of light. 

To begin our own “transformation” to this new way of thinking, we first introduce some 
important terminology, and then modify our use of these Galilean kinematics plots to our 
advantage.   

Terminology. In the jargon of spacetime diagrams, the green point on Tom’s and Sarah’s 
plots is an event and the red or blue trajectories are worldlines. 
 
An event is anything that can be characterized by a single point on a spacetime diagram 
(or on a position vs time graph). An event must have both a time and a place, and 
specifically refers to where and when the event actually happened within that reference 
frame. We distinguish this from when an event is seen or noticed – seeing or noticing an 
event is actually a second event with its own time and place. Examples of events include 
the point in time and space at which Tom threw the red ball, as well as the point and time 
when Sarah catches the ball. Yet another event is when and where the firecracker 
exploded, and still another event is when and where Tom sees the light from the 
firecracker explosion. All of the events are known to occur by both Tom and Sarah, but 
each of them will consider the events to have different time and position coordinates in 
their respective frames.  
 
A worldline can be defined as ‘a curve in spacetime joining the positions of a particle 
throughout its existence.’ Each object has its own worldline within a given reference 
frame. The worldline thus describes the entire history and future of the object. A 
worldline is composed of an infinite continuum of events (e.g., the location of the red ball 
at one time, the location of the red ball an infinitesimal time later, ad infinitum) and 
describes the motion of an object within that reference frame. Objects moving at a 
constant speed have straight worldlines. Objects that accelerate have curved worldlines; 
however, we typically won’t consider accelerations in our treatment of special relativity. 
 
Building a Spacetime Diagram. Most of the problems we will consider in special 
relativity only have one relevant position coordinate, which is the direction of relative 
motion between objects we wish to study. We call this coordinate x and plot it on the 
horizontal axis. We plot time on the vertical axis. This is reversed compared to what you 
are used to, but as we work through some examples, you will see that this is sensible for 
relativistic scenarios. We contrast the difference in these two approaches below on the 
left (classical Newtonian) and the right (modern relativistic) kinematic plots; the primary 
feature is the reversal of the interpretation of the slope of the line which denotes speed. 
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In addition to this reversal, there is one other critical difference: we rescale time by the 
speed of light; that is, ct (rather than t) is plotted on the vertical axis. As a consequence, 
the unit of time is replaced by its meter equivalent, so that both axes are measured in the 
same units. As a result, the time “1 s” is replaced by “the distance light travels in 1 s.” 
 
To obtain a worldline in the new system of units, start with the known equation of motion 
and then manipulate it in a way that is useful for our purposes but doesn’t change the 
content of the equation. To wit: 

 

Because we want ct on the y-axis, the velocity term is moved to the opposite side to 
obtain  

 

 
This equation tells us that the slope of the worldline of an object traveling at velocity v 
relative to a frame S is c/v. This ratio v/c is given a new variable name in Relativity: β. 
 
Using this new notation, we redraw our modern 
relativistic plot as shown to the right. If we agree to 
make the units of ct on the vertical axis the same as 
the units of x on the horizontal axis, we discover that 
a line of slope 1 is synonymous with the speed of light 
in the frame associated with the plot. You may have 
additionally heard that “nothing can travel faster than 
the speed of light.” We will make a more specific 
statement about this later, but the practical 
consequence is shown in the plot – not all speeds are 
possible! 
 
If you find the new measure of time as a distance 
confusing, ask yourself how many times you’ve heard, 
or said, “How far away are you? About 30 minutes!” 

x = vt → x = v
c
(ct)

ct = c
v
x
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The red ball on a spacetime diagram in 
Tom’s reference frame looks like the 
figure to the right. In this example, the 
red ball is moving very slowly compared 
to the speed of light. Thus the two axes 
are most naturally presented with scales 
that differ by eight orders of magnitude; 
however, in problems that are interesting 
from the perspective of special relativity, 
the scale of the two axes (x and ct) will 
be of comparable size. The green dot 
signifies the firecracker at x = 1 m and 
time = 2 sec 
 
 
Key Summary Observations 
 
The key concepts required to draw correct spacetime diagrams are listed below: 
 

• A spacetime diagram applies to a specific reference frame. You can draw a spacetime 
diagram for any reference frame, but the diagram will not look the same when drawn 
in a different reference frame. 

• Events on any horizontal line have the same value for t and are simultaneous in the 
reference frame. 

• Events on any vertical line have the same value for x and thus occur at the same 
position. 

• The spacetime origin (x = 0, t = 0) is the present time and location of the observer 
centered in this reference frame. Events with t > 0 are in the future and events with t 
< 0 are in the past of this observer.  

• The location of the origin can be chosen to make the solution of a problem as 
convenient as possible, just as for regular kinematics. 

 
We present below an additional spacetime diagram example to help clarify these key 
ideas, with Scooby and Shaggy Doo. Your first Relativity studio will refer to both Tom 
and Sarah above and Scooby and Shaggy; it will be helpful to review them carefully here.  
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Scooby and Shaggy 
 
Scooby and Shaggy, stationed at a remote astrophysical observatory, are tasked with 
monitoring the life cycle of nearby stars. Scooby looks out the window just in time to see 
a distant star go nova. He checks his charts and learns that that particular star is 1.8 
billion km away. Shaggy immediately jumps in his shaggyship and jets away at his 
maximum speed of 0.5c towards the star (β = 0.5). Thirty minutes later Scooby observes 
yet another star go nova; this one is 2.7 billion km away in the opposite direction. Scooby 
immediately signals Shaggy on the radio to let him know about the second nova. When 
he receives the transmission, Shaggy decides that the latter explosion is of greater 
scientific interest so he slams on the brakes and reverses direction towards the remnants 
of the second star. Our goal is to describe these events with a spacetime diagram. 
 
Because it initially seems like the simplest approach, we select Scooby’s reference frame 
for the spacetime diagram. We choose to define t = 0 as the time when Scooby sees the 
first star explode (in general, note the extreme importance of distinguishing between 
when an event occurs and when it is observed). The events and worldlines provided 
explicitly in the example are shown below in Scooby’s frame of reference: 

 
The locations of the stars are 
known independently from 
Scooby’s star charts. For 
reference, the tick marks are 
6×1011 meters (0.6 billion km) 
apart. Their worldlines are shown 
in dotted form and are considered 
to be at rest with respect to 
Scooby’s observatory. 
 
The red eye is the event “Scooby 
sees the 1st star explode.” 
 
The blue eye is the event “Scooby 
sees the 2nd star explode.”   
 
Conceptual Question to Ponder: 
Does it make sense that the 
second event is approximately 1 
tick mark (6×1011 meters) along 
the ct-axis from the first event?  
(see answer on page 9).  
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From the above starting diagram 
we can trace the world lines of 
the light given off from the novae 
explosions to figure out exactly 
when the stars self-destructed. 
The worldlines of light (since 
light moves at speed c) always 
have a slope of ±1 (β = 1). These 
lines are superimposed on the 
diagram. The diagram 
immediately informs us that, in 
Scooby’s frame of reference, Star 
2 exploded first, and Star 1 
second, even though Scooby sees 
the events in the reverse order. 
The diagram immediately shows 
why this is the case: light from 
star 1 has to travel a smaller 
distance. 
 
 
 
 
 
 
 
 
 
 
The next step is to add Shaggy 
and the radio communication to 
the spacetime diagram. 
Shaggy’s initial speed is +0.5c, 
which has a slope of +2 on the 
diagram (brown worldline). The 
radio signal (slope = +1, yellow) 
on its way to Shaggy’s headset 
is not sent until Scooby sees the 
second nova: 

 
  

first 
second 
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When Shaggy gets the signal to turn 
around, we add in the worldline for the 
last leg of his journey. Shaggy has 
reversed direction, so his new slope is  
–2. As a result of the reversal, he 
eventually returns to Scooby’s location 
at a later time, and continues to the 
second nova.  
 
Given the size of the tick marks on the 
diagram, it is possible to determine all 
the numerical values by reading them 
off the diagram. At times, we will use 
the equations of relativistic kinematics 
to compare the results to those on the 
diagrams. 

 
 
 
Answers to Conceptual Questions from page 1: 
 

• What is the physical significance of the origin in the plot? 
 

The origin is Tom’s position at t = 0, which we’ve defined as when he 
starts his stopwatch.  Note that you may make a plot where time is shifted 
that still represents Tom’s reference frame; in this problem we drew the 
ball toss starting at t = 0 for our convenience.  

 
• How would Tom’s location at various times on the plot be represented? 

 
Since Tom is not moving within his reference frame, he remains at x = 0 at 
all times.  Thus, his location is represented by the horizontal (time) axis. 

 
 
Answer to Conceptual Question from page 7: 
 

• Does it make sense that the second event is approximately 1 tick mark (6×1011 
meters) along the ct-axis from the first event?   

 
We know that the two events are 30 minutes apart in Scooby’s reference 
frame.  If we calculate the distance light travels in 30 minutes: 

 
ct = (3×108 m/s)(60 s/min)(30 min) = 5.4×1011 m 

 
It’s close – the second event is slightly below the 1st tick mark.  
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You Don’t Know Jack 
 
Jack is sitting at a table on a spaceship that passes by a lonely blue space meteor. The 
relative speed between Jack’s spaceship and the meteor is 0.9c. Jack observes the meteor 
moving in the direction of his negative x-axis, while an observer at rest on the meteor 
would observe the spaceship moving along their positive x-axis. On board the ship with 
Jack is a red meter stick – it rests on the table with its ends at x = +1 m and +2 m. The 
meter stick is at rest in Jack's reference frame; therefore, its red world line has a slope of 
c/0 (infinity), which describes a vertical line. The blue space meteor, however, is moving 
past Jack with a velocity of –0.9c, so its blue world line has a slope of c/(–0.9c) = –1.11. 
Notice the advantage gained by plotting time “as a distance”: all slopes on a spacetime 
diagram are dimensionless (they are merely positive or negative numbers).  
 
The spacetime diagram in Jack’s reference 
frame (right) shows the worldlines of the red 
meter stick and the blue space meteor, as just 
described. Jack’s location is along the ct axis, at 
x = 0. Although Jack is at rest in the 
conventional sense, he is in fact traversing 
through spacetime: he is moving into his future. 
 
The black dot represents the spacetime 
coordinates of the event we denote as “the time 
when and the place where the blue space meteor 
passes Jack.” 
 
Imagine now that Jack’s captain, sitting in the 
ship to Jack’s left, slides a green meter stick 
towards Jack on the table at a velocity of 0.8c with respect to Jack, oriented such that it is 
parallel to the red stick. Jack watches the green stick slide by the red stick (very quickly!). 
The green stick is moving past Jack with a velocity of 0.8c, so its green worldline has a 
slope of c/(0.8c) = +1.25. Jack starts his stopwatch (ct = 0) at the moment that the left end 
of each of the meter stick lines up. These occurrences are shown in the figure below right.  
 
Note an interesting omission from the figure – 
what happened to the right end of the green meter 
stick? It’s missing from the figure, because 
something peculiar happens that cannot be 
explained yet: according to Jack, the right ends of 
each meter stick won’t line up at the same time 
the left ends do, and the two meter sticks will 
appear to be different lengths. This “relativity of 
simultaneity,” and its consequence, “length 
contraction,” will be addressed in the 2nd and 3rd 
Relativity modules. 
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This scenario is rather busy in terms of spacetime diagrams, but understanding why it’s drawn as 
shown represents a good test of your conceptual understanding. You’ve already seen the 
spacetime diagrams, but if you had only the description of the events in question (as you might 
see on an exam), how well would you be able to answer the following questions? (short answers 
on the next page): 
 

• How would we represent (draw) Jack’s reference frame? 
• Is Jack moving in his reference frame? 
• How would we represent Jack’s worldline? 
• How would we represent the red meter stick, and why does it have 2 worldlines? 
• How would we represent the blue meteor in a diagram? 
• How do we know what slope to use for the blue meteor’s (or any) worldline? 
• Does it matter in what direction the meteor is moving on the diagram? 
• How would the Captain’s worldline be drawn? 
• How would the green meter stick’s worldline be drawn? 
• Why would the green worldline not be drawn like the meteor? After all, it also 

presumably passes Jack! Or does Jack pass the green meter stick? 
• What’s up with the missing right end of the green meter stick?  
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Answer to You Don’t Know Jack Questions 
 
 
• How would we represent (draw) Jack’s reference frame? 

o ST diagram, ct vs x, not a kinematic plot of x vs t 
• Is Jack moving in his reference frame? 

o He is at rest but moving into his future 
• How would we represent Jack’s worldline? 

o As an object that doesn’t change position (at rest: a vertical line) 
• How would we represent the red meter stick, and why does it have 2 worldlines? 

o It’s also at rest, so vertical lines again, but 2 to represent the left and right ends 
• How would we represent the blue meteor in a diagram? 

o As an object with negative velocity (slope). 
• How do we know what slope to use for the blue meteor’s (or any) worldline? 

o The slope of any worldline is equal to 1/β 
• Does it matter in what direction the meteor is moving on the diagram? 

o Oh good point we seemed to have missed this nuance – Jack “passes the meteor,” 
but Jack is at rest in his frame, therefore he sees the meteor go by him, not the 
other way around. The meteor could be moving in either direction, but all we 
know is its speed and that it first approaches Jack and then moves farther away. 
We have chosen to depict the meteor passing as it does, to the left.  

• How would the Captain’s worldline be drawn? 
o At rest on the negative side of Jack, assuming that left is negative. 

• How would the green meter stick’s worldline be drawn? 
o As a worldline with positive slope equal to 1/βgreen stick 

• Why would the green worldline not be drawn like the meteor? After all, it also 
presumably passes Jack! Or does Jack pass the green meter stick? 

o Good point again. These choices have meaning, but the Captain threw the green 
stick toward Jack, and the Captain was depicted as on the left.  

• What’s up with the missing right end of the green meter stick?  
o You’ll have to wait and see! Suffice it for now to say that the green stick is in a 

different inertial frame because of its relative motion, and what are simultaneous 
events in the “green” frame are not simultaneous events in the “red” frame 
shared with Jack and his Captain. But since the length of either stick can ONLY 
be determined by measuring the location of its ends simultaneously, the inherent 
disagreement about simultaneity leads to a conclusion that the length of the 
green stick, as measured by Jack and the Captain, is different (in fact, shorter). 
We will learn how to calculate how much shorter in a studio. 

 


