
Measurements & Uncertainty Analysis 
	
	

1 Department of Physics and Astronomy  
	
	

Measurement and Uncertainty Analysis Guide 
	

“It	is	better	to	be	roughly	right	than	precisely	wrong.”		–	Alan	Greenspan	

Table of Contents 
THE	UNCERTAINTY	OF	MEASUREMENTS	...............................................................................................................	2	
RELATIVE	(FRACTIONAL)	UNCERTAINTY	..............................................................................................................	4	
RELATIVE	ERROR	.......................................................................................................................................................	5	
TYPES	OF	UNCERTAINTY	..........................................................................................................................................	6	
ESTIMATING	EXPERIMENTAL	UNCERTAINTY	FOR	A	SINGLE	MEASUREMENT	.................................................	9	
ESTIMATING	UNCERTAINTY	IN	REPEATED	MEASUREMENTS	............................................................................	9	
STANDARD	DEVIATION	..........................................................................................................................................	11	
STANDARD	DEVIATION	OF	THE	MEAN	(STANDARD	ERROR)	..........................................................................	13	
WHEN	TO	USE	STANDARD	DEVIATION	VS	STANDARD	ERROR	........................................................................	13	
ANOMALOUS	DATA	.................................................................................................................................................	14	
BIASES	AND	THE	FACTOR	OF	N–1	.......................................................................................................................	14	
SIGNIFICANT	FIGURES	............................................................................................................................................	15	
UNCERTAINTY,	SIGNIFICANT	FIGURES,	AND	ROUNDING	.................................................................................	16	
PROPAGATION	OF	UNCERTAINTY	.........................................................................................................................	19	
THE	UPPER-LOWER	BOUND	METHOD	OF	UNCERTAINTY	PROPAGATION	....................................................	19	
THE	QUADRATURE	METHOD	OF	UNCERTAINTY	PROPAGATION	.....................................................................	22	
COMBINING	AND	REPORTING	UNCERTAINTIES	.................................................................................................	26	
MEASUREMENTS	AND	THEIR	AGREEMENT	........................................................................................................	27	
MAKING	GRAPHS	OR	PLOTS	OF	DATA	.................................................................................................................	30	
USING	EXCEL	FOR	DATA	ANALYSIS	IN	PHYSICS	LABS	.......................................................................................	32	
GETTING	STARTED	..................................................................................................................................................	32	
CREATING	AND	EDITING	A	PLOT	..........................................................................................................................	33	
ADDING	ERROR	BARS	............................................................................................................................................	34	
ADDING	A	TRENDLINE	...........................................................................................................................................	34	
DETERMINING	THE	UNCERTAINTY	IN	SLOPE	AND	Y-INTERCEPT	..................................................................	35	
REFERENCES:	...........................................................................................................................................................	37	
APPENDIX	I.	EXTENSION	OF	QUADRATURE	TO	ARBITRARY	POWER	LAWS	..................................................	38	
APPENDIX	II.	PRACTICAL	EXAMPLES	FOR	MEASURING	AND	CITING	UNCERTAINTY	..................................	40	
APPENDIX	III.	SUMMARY	OF	IMPORTANT	TIPS	FOR	UNCERTAINTY	IN	PHYS	118/119	..........................	57	

	
last	updated	Aug	03,	2022	

if	your	copy	dates	from	the	SP22	semester	or	before,	it	is	out	of	date!	

	  



Measurements & Uncertainty Analysis 
	
	

 
2 University of North Carolina 
	
	

The	Uncertainty	of	Measurements	
	

Some	 numerical	 statements	 are	 exact:	 Mary	 has	 3	 brothers,	 and	 2	 +	 2	 =	 4.	
However,	all	measurements	have	some	degree	of	uncertainty	that	may	come	from	a	
variety	 of	 sources.	 The	 process	 of	 evaluating	 the	 uncertainty	 associated	 with	 a	
measurement	result	is	often	called	uncertainty	analysis	or	sometimes	error	analysis.	

The	complete	statement	of	a	measured	value	should	 include	an	estimate	of	 the	
level	 of	 conJidence	 associated	with	 the	 value.	 Properly	 reporting	 an	 experimental	
result	along	with	its	uncertainty	allows	other	people	to	make	judgments	about	the	
quality	 of	 the	 experiment,	 and	 it	 facilitates	 meaningful	 comparisons	 with	 other	
similar	 values	 or	 a	 theoretical	 prediction.	 Without	 an	 uncertainty	 estimate,	 it	 is	
impossible	 to	 answer	 the	 basic	 scientiJic	 question:	 “Does	 my	 result	 agree	 with	 a	
theoretical	 prediction	 or	 results	 from	 other	 experiments?”	 This	 question	 is	
fundamental	for	deciding	if	a	scientiJic	hypothesis	is	conJirmed	or	refuted.	

When	 making	 a	 measurement,	 we	 generally	 assume	 that	 some	 exact	 or	 true	
value	exists	based	on	how	we	deJine	what	is	being	measured.	While	we	may	never	
know	this	true	value	exactly,	we	attempt	to	Jind	this	ideal	quantity	to	the	best	of	our	
ability	 with	 the	 time	 and	 resources	 available.	 As	 we	 make	 measurements	 by	
different	 methods,	 or	 even	 when	 making	 multiple	 measurements	 using	 the	 same	
method,	we	may	obtain	slightly	different	results.	So	how	do	we	report	our	Jindings	
for	our	best	estimate	of	this	elusive	true	value?		The	most	common	way	to	show	the	
range	of	values	that	we	believe	includes	the	true	value	is:	
	

measurement	=	(best	estimate	±	uncertainty)	units	
	

As	an	example,	suppose	you	want	to	Jind	the	mass	of	a	gold	ring	that	you	would	
like	to	sell	to	a	friend.	You	do	not	want	to	jeopardize	your	friendship,	so	you	want	to	
get	an	accurate	mass	of	the	ring	in	order	to	charge	a	fair	market	price.	You	estimate	
the	mass	to	be	between	10	and	20	grams	from	how	heavy	it	feels	in	your	hand,	but	
this	 is	 not	 a	 very	 precise	 estimate.	 After	 some	 searching,	 you	 Jind	 an	 electronic	
balance	that	gives	a	mass	reading	of	17.43	grams.	While	this	measurement	is	much	
more	precise	 than	 the	 original	 estimate,	 how	do	 you	know	 that	 it	 is	accurate,	 and	
how	conJident	are	you	that	this	measurement	represents	the	true	value	of	the	ring’s	
mass?	 Since	 the	 digital	 display	 of	 the	 balance	 is	 limited	 to	 2	 decimal	 places,	 you	
could	report	the	mass	as	m	=	17.43	±	0.01	g.	Suppose	you	use	the	same	electronic	
balance	 and	 obtain	 several	 more	 readings:	 17.46	 g,	 17.42	 g,	 17.44	 g,	 so	 that	 the	
average	mass	 appears	 to	 be	 in	 the	 range	 of	 17.44	 ±	 0.02	 g.	 By	 now	 you	may	 feel	
conJident	 that	you	know	the	mass	of	 this	ring	 to	 the	nearest	hundredth	of	a	gram,	
but	how	do	you	know	that	the	true	value	deJinitely	lies	between	17.43	g	and	17.45	
g?	 Since	 you	 want	 to	 be	 honest,	 you	 decide	 to	 use	 another	 balance	 that	 gives	 a	
reading	of	17.22	g.	This	value	is	clearly	below	the	range	of	values	found	on	the	Jirst	
balance,	 and	under	normal	 circumstances,	 you	might	not	 care,	but	you	want	 to	be	
fair	to	your	friend.	So	what	do	you	do	now?		The	answer	lies	in	knowing	something	
about	the	accuracy	of	each	instrument.	
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To	help	answer	these	questions,	we	Jirst	deJine	the	terms	accuracy	and	precision:	
	

Accuracy	is	the	closeness	of	agreement	between	a	measured	
value	and	a	true	or	accepted	value.		Measurement	error	is	the	
amount	of	inaccuracy.	
	
Precision	is	a	measure	of	how	well	a	result	can	be	
determined	(without	reference	to	a	theoretical	or	true	value).	
It	is	the	degree	of	consistency	and	agreement	among	
independent	measurements	of	the	same	quantity;	also	the	
reliability	or	reproducibility	of	the	result.	

	
The	accuracy	and	precision	can	be	pictured	as	follows:	
	

	  

	 	 	 	
	
high	precision,	low	accuracy	 	 low	precision,	high	accuracy	

	
Figure	1.	Accuracy	vs	Precision	
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The	 uncertainty	 estimate	 associated	 with	 a	 measurement	 should	 account	 for	
both	the	accuracy	and	precision	of	the	measurement.	Precision	indicates	the	quality	
of	 the	 measurement,	 without	 any	 guarantee	 that	 the	 measurement	 is	 “correct.”	
Accuracy,	 on	 the	 other	 hand,	 assumes	 that	 there	 is	 an	 ideal	 “true”	 value,	 and	
expresses	 how	 far	 your	 answer	 is	 from	 that	 “correct”	 answer.	 These	 concepts	 are	
directly	related	to	random	and	systematic	measurement	uncertainties	(next	section).	
	
Note:	Unfortunately,	the	terms	error	and	uncertainty	are	often	used	interchangeably	
to	 describe	 both	 imprecision	 and	 inaccuracy.	 This	 usage	 is	 so	 common	 that	 it	 is	
impossible	 to	avoid	entirely.	Whenever	you	encounter	 these	 terms,	make	sure	you	
understand	whether	they	refer	to	accuracy	or	precision,	or	both.	In	this	document,	
we	will	emphasize	the	term	“uncertainty”	but	will	use	the	term	“error,”	as	necessary,	
to	avoid	confusion	with	commonly	found	examples	and	standard	usage	of	the	term.	
	

To	determine	the	accuracy	of	a	particular	measurement,	we	must	know	the	ideal,	
true	 value,	 sometimes	 referred	 to	 as	 the	 “gold	 standard.”	Sometimes	 we	 have	 a	
“textbook”	measured	 value,	 which	 is	 well	 known,	 and	we	 assume	 that	 this	 is	 our	
“ideal”	value	and	use	it	to	estimate	the	accuracy	of	our	result.	Other	times	we	know	a	
theoretical	 value,	 which	 is	 calculated	 from	 basic	 principles,	 and	 this	 also	 may	 be	
taken	as	an	“ideal”	value.	But	physics	is	an	empirical	science,	which	means	that	the	
theory	 must	 be	 validated	 by	 experiment,	 and	 not	 the	 other	 way	 around.	 We	 can	
escape	these	difJiculties	and	retain	a	useful	deJinition	of	accuracy	by	assuming	that,	
even	when	we	do	not	know	the	true	value,	we	can	rely	on	the	best	available	accepted	
value	with	which	to	compare	our	experimental	value.	

For	the	gold	ring	example,	there	is	no	accepted	value	with	which	to	compare,	and	
both	measured	values	have	the	same	precision,	so	there	is	no	reason	to	believe	one	
more	than	the	other.	We	could	look	up	the	accuracy	speciJications	for	each	balance	
as	 provided	 by	 the	 manufacturer,	 but	 the	 best	 way	 to	 assess	 the	 accuracy	 of	 a	
measurement	is	to	compare	it	with	a	known	standard.	For	this	situation,	it	may	be	
possible	 to	 calibrate	 the	 balances	 with	 a	 standard	mass	 that	 is	 accurate	 within	 a	
narrow	 tolerance	 and	 is	 traceable	 to	 a	 primary	 mass	 standard	 at	 the	 National	
Institute	 of	 Standards	 and	 Technology	 (NIST).	 Calibrating	 the	 balances	 should	
eliminate	the	discrepancy	between	the	readings	and	provide	a	more	accurate	mass	
measurement.	

Relative	(Fractional)	Uncertainty	
	

Precision	 is	 often	 reported	 quantitatively	 by	 using	 relative	 or	 fractional	
uncertainty,	given	by	the	ratio	of	the	uncertainty	divided	by	the	average	value:	
	

	 	 	 (1)	

	

Relative Uncertainty =  uncertainty
measured quantity
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The	 relative	uncertainty	 is	dimensionless	but	 is	often	 reported	as	 a	percentage	or	 in	
parts	 per	million	 (ppm)	 to	 emphasize	 the	 fractional	 nature	 of	 the	 value.	 A	 scientist	
might	also	make	the	statement	that	this	measurement	“is	good	to	about	1	part	in	500”	
or	“precise	to	about	0.2%”.	The	relative	uncertainty	is	important	because	it	 is	used	in	
propagating	 uncertainty	 in	 calculations	 using	 the	 result	 of	 a	 measurement,	 as	
discussed	in	a	later	section.	For	example,	m	=	75.5	±	0.5	g	has	a	relative	uncertainty	of	
	

	

Relative	Error	
	
Accuracy	is	often	reported	quantitatively	by	using	relative	error:	
	

	 	 	 	 (2)	

	
	
If	the	expected	value	for	m	is	80.0	g,	then	the	relative	error	is:	
	
Critical	Notes:	

• The	minus	 sign	 indicates	 that	 the	measured	value	 is	 less	 than	 the	 expected	
value	–	unless	explicitly	stated,	 the	term	“relative	error”	is	signed	and	does	not	
in	and	of	itself	refer	to	a	magnitude.		

• The	 denominator	 is	 neither	 the	 measured	 value	 nor	 the	 average	 of	 the	
measured	and	expected	value	–	the	relative	error	can	only	be	cited	when	there	
is	a	known	expected	value	or	gold	standard.	

• A	relative	error	of	100%	means	 that	 the	upper	bound	could	be	as	much	as	
twice	the	value.	A	relative	error	of	200%	means	that	the	upper	bound	could	
be	as	much	as	triple	the	value,	and	so	on.	Do	not	misinterpret	a	200%	error	as	
twice	the	value.	

	
	  

%7.0600.0
5.75
5.0

==
g
g

Relative Error =  measured value - expected value
expected value

%6.5056.0
0.80
0.805.75

-=-=
-
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Types	of	Uncertainty	
	

Measurement	uncertainties	may	be	classiJied	as	either	random	 or	systematic,	
depending	 on	 how	 the	measurement	 was	 obtained	 (an	 instrument	 could	 cause	 a	
random	uncertainty	in	one	situation	and	a	systematic	uncertainty	in	another).	
	
Random	 uncertainties	 are	 statistical	 Jluctuations	 (in	 either	 direction)	 in	 the	
measured	data.	These	uncertainties	may	have	their	origin	in	the	measuring	device,	
or	in	the	fundamental	physics	underlying	the	experiment.	The	random	uncertainties	
may	be	masked	by	the	precision	or	accuracy	of	 the	measurement	device.	 	Random	
uncertainties	 can	 be	 evaluated	 through	 statistical	 analysis	 and	 can	 be	 reduced	 by	
averaging	over	many	observations	(see	“standard	error”	later	in	this	document).	
	
Systematic	uncertainties	are	reproducible	inaccuracies	that	are	consistently	in	the	
“same	direction,”	and	could	be	caused	by	an	artifact	in	the	measuring	instrument,	or	
a	Jlaw	in	the	experimental	design	(because	of	these	possibilities,	it	is	not	uncommon	
to	 see	 the	 term	 “systematic	 error”).	 These	 uncertainties	may	 be	 difJicult	 to	 detect	
and	cannot	be	analyzed	statistically.	If	a	systematic	uncertainty	or	error	is	identiJied	
when	 calibrating	 against	 a	 standard,	 applying	 a	 correction	 or	 correction	 factor	 to	
compensate	 for	 the	 effect	 can	 reduce	 the	 bias.	 Unlike	 random	 uncertainties,	
systematic	uncertainties	cannot	be	detected	or	reduced	by	increasing	the	number	of	
observations.	
	
When	 making	 careful	 measurements,	 the	 goal	 is	 to	 reduce	 as	 many	 sources	 of	
uncertainty	 as	 possible	 and	 to	 keep	 track	of	 those	 that	 cannot	 be	 eliminated.	 It	 is	
useful	to	know	the	types	of	uncertainties	that	may	occur,	so	that	we	may	recognize	
them	 when	 they	 arise.	 Common	 sources	 of	 uncertainty	 in	 physics	 laboratory	
experiments	include:	
	
Incomplete	 deFinition	 (may	 be	 systematic	 or	 random)	 -	 One	 reason	 that	 it	 is	
impossible	 to	 make	 exact	 measurements	 is	 that	 the	 measurement	 is	 not	 always	
clearly	deJined.	For	example,	if	two	different	people	measure	the	length	of	the	same	
string,	 they	would	probably	 get	different	 results	because	 each	person	may	 stretch	
the	string	with	a	different	tension.	The	best	way	to	minimize	deJinition	uncertainty	
is	to	carefully	consider	and	specify	the	conditions	that	could	affect	the	measurement.	
	
Failure	to	account	for	a	factor	(usually	systematic)	–	The	most	challenging	part	of	
designing	an	experiment	is	trying	to	control	or	account	for	all	possible	factors	except	
the	 one	 independent	 variable	 that	 is	 being	 analyzed.	 For	 instance,	 you	 may	
inadvertently	 ignore	 air	 resistance	 when	 measuring	 free-fall	 acceleration,	 or	 you	
may	fail	 to	account	 for	the	effect	of	 the	Earth’s	magnetic	 Jield	when	measuring	the	
Jield	near	a	small	magnet.	The	best	way	to	account	for	these	sources	of	uncertainty	
is	to	brainstorm	with	your	peers	about	all	the	factors	that	could	possibly	affect	your	
result.	This	brainstorm	should	be	done	before	beginning	the	experiment	in	order	to	
plan	 and	 account	 for	 the	 confounding	 factors	 before	 taking	 data.	 Sometimes	 a	
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correction	can	be	applied	to	a	result	after	taking	data	to	account	for	an	uncertainty	
that	was	not	detected	earlier.	
	
Environmental	 factors	 (systematic	 or	 random)	 -	 Be	 aware	 of	 uncertainty	
introduced	by	the	immediate	working	environment.	You	may	need	to	take	account	of	
or	 protect	 your	 experiment	 from	 vibrations,	 drafts,	 changes	 in	 temperature,	 and	
electronic	noise	or	other	effects	from	nearby	apparatus.	
	
Instrument	resolution	(random)	-	All	instruments	have	Jinite	precision	that	limits	
the	 ability	 to	 resolve	 small	 measurement	 differences.	 For	 instance,	 a	 meter	 stick	
cannot	be	used	to	distinguish	distances	to	a	precision	much	better	than	about	half	of	
its	 smallest	scale	division	(typically	0.5	mm).	One	of	 the	best	ways	 to	obtain	more	
precise	 measurements	 is	 to	 use	 a	 null	 difference	method	 instead	 of	 measuring	 a	
quantity	directly.	Null	or	balance	methods	involve	using	instrumentation	to	measure	
the	 difference	 between	 two	 similar	 quantities,	 one	 of	 which	 is	 known	 very	
accurately	 and	 is	 adjustable.	 The	 adjustable	 reference	 quantity	 is	 varied	 until	 the	
difference	 is	 reduced	 to	 zero.	 The	 two	 quantities	 are	 then	 balanced,	 and	 the	
magnitude	 of	 the	 unknown	 quantity	 can	 be	 found	 by	 comparison	 with	 a	
measurement	 standard.	 With	 this	 method,	 problems	 of	 source	 instability	 are	
eliminated,	and	the	measuring	instrument	can	be	very	sensitive	and	does	not	even	
need	a	scale.	This	type	of	measurement	is	more	sophisticated	and	will	typically	not	
be	used	in	the	introductory	physics	courses.	
	
Calibration	 (systematic)	 –	Whenever	 possible,	 the	 calibration	 of	 an	 instrument	
should	be	checked	before	taking	data.	 If	a	calibration	standard	is	not	available,	 the	
accuracy	 of	 the	 instrument	 should	 be	 checked	 by	 comparing	 with	 another	
instrument	that	is	at	least	as	precise,	or	by	consulting	the	technical	data	provided	by	
the	manufacturer.	 	 Calibration	errors	 are	usually	 linear	 (measured	as	 a	 fraction	of	
the	full-scale	reading),	so	that	larger	values	result	in	greater	absolute	errors.	
	
Zero	offset	(systematic)	-	When	making	a	measurement	with	a	micrometer	caliper,	
electronic	balance,	or	electrical	meter,	always	check	 the	zero	reading	 Jirst.	Re-zero	
the	 instrument	 if	 possible,	 or	 at	 least	measure	 and	 record	 the	 zero	 offset	 so	 that	
readings	 can	 be	 corrected	 later.	 It	 is	 also	 a	 good	 idea	 to	 check	 the	 zero	 reading	
throughout	the	experiment.	 	Failure	to	zero	a	device	will	result	in	a	constant	offset	
that	is	more	signiJicant	for	smaller	measured	values	than	for	larger	ones.	
	
Physical	variations	(random)	-	It	 is	always	wise	to	obtain	multiple	measurements	
over	 the	 widest	 range	 possible.	 Doing	 so	 often	 reveals	 variations	 that	 might	
otherwise	go	undetected.		These	variations	may	call	for	closer	examination,	or	they	
may	be	combined	to	Jind	an	average	value.	
	
Parallax	 (systematic	 or	 random)	 -	 This	 error	 can	 occur	 whenever	 there	 is	 some	
distance	 between	 the	 measuring	 scale	 and	 the	 indicator	 used	 to	 obtain	 a	
measurement.	 	 If	 the	 observer’s	 eye	 is	 not	 squarely	 aligned	with	 the	 pointer	 and	
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scale,	the	reading	may	be	too	high	or	low	(some	analog	meters	have	mirrors	to	help	
with	this	alignment).	
	
Instrument	drift	(systematic)	-	Most	electronic	instruments	have	readings	that	drift	
over	 time.	 	 The	 amount	 of	 drift	 is	 generally	 not	 a	 concern,	 but	 occasionally	 this	
source	of	uncertainty	can	be	signiJicant.	
	
Lag	 time	 and	 hysteresis	 (systematic)	 -	 Some	measuring	 devices	 require	 time	 to	
reach	equilibrium;	taking	a	measurement	before	the	instrument	is	stable	will	result	
in	a	measurement	that	is	too	high	or	low.	A	common	example	is	taking	temperature	
readings	 with	 a	 thermometer	 that	 has	 not	 reached	 thermal	 equilibrium	 with	 its	
environment.		A	similar	effect	is	hysteresis,	wherein	the	instrument	readings	lag	and	
appear	to	have	a	“memory”	effect,	as	data	are	taken	sequentially	moving	up	or	down	
through	a	 range	of	values.	Hysteresis	 is	most	 commonly	associated	with	materials	
that	become	magnetized	when	a	changing	magnetic	Jield	is	applied.	
	
Last	 but	 not	 least,	 some	 uncertainties	 are	 the	 result	 of	 carelessness,	 poor	
technique,	 or	 bias	 on	 the	 part	 of	 the	 experimenter.	 The	 experimenter	 may	 use	 a	
measuring	device	incorrectly,	or	may	use	poor	technique	in	taking	a	measurement,	
or	may	introduce	a	bias	into	measurements	by	expecting	(and	inadvertently	forcing)	
the	 results	 to	 agree	with	 the	 expected	outcome.	Gross	uncertainties	of	 this	nature	
can	be	 referred	 to	 as	mistakes	 or	blunders	 and	 should	be	avoided	and	 corrected	 if	
discovered.	As	a	rule,	these	uncertainties	are	excluded	from	any	uncertainty	analysis	
discussion	 because	 it	 is	 generally	 assumed	 that	 the	 experimental	 result	 was	
obtained	by	following	correct	and	well-intentioned	procedures	–	there	is	no	point	to	
performing	an	experiment	and	then	reporting	that	it	was	known	to	be	incorrect.	The	
term	human	error	should	be	avoided	in	uncertainty	analysis	discussions	because	it	is	
too	general	to	be	useful.	
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Estimating	Experimental	Uncertainty	for	a	Single	Measurement	
	

Any	measurement	will	have	some	uncertainty	associated	with	 it,	no	matter	 the	
precision	of	the	measuring	tool.	How	is	this	uncertainty	determined	and	reported?	
The	uncertainty	of	a	single	measurement	is	limited	by	the	precision	and	accuracy	of	
the	measuring	instrument,	along	with	any	other	factors	that	might	affect	the	ability	
of	the	experimenter	to	make	the	measurement.	

For	example,	if	you	are	trying	to	use	a	meter	stick	to	measure	the	diameter	of	a	
tennis	 ball,	 the	 uncertainty	might	 be	±5	mm,	 but	 if	 you	 use	 a	 Vernier	 caliper,	 the	
uncertainty	could	be	reduced	to	maybe	±2	mm.	The	 limiting	 factor	with	 the	meter	
stick	is	parallax,	while	the	second	case	is	limited	by	ambiguity	in	the	deJinition	of	the	
tennis	ball’s	diameter	(it’s	fuzzy!).	In	both	of	these	cases,	the	uncertainty	is	greater	
than	the	smallest	divisions	marked	on	the	measuring	tool	(likely	1	mm	and	0.05	mm	
respectively).	Unfortunately,	there	is	no	general	rule	for	determining	the	uncertainty	
in	 all	 measurements.	 The	 experimenter	 is	 the	 one	 who	 can	 best	 evaluate	 and	
quantify	 the	 uncertainty	 of	 a	 measurement	 based	 on	 all	 the	 possible	 factors	 that	
affect	the	result.	Therefore,	the	person	making	the	measurement	has	the	obligation	
to	make	the	best	judgment	possible	and	report	the	uncertainty	in	a	way	that	clearly	
explains	what	the	uncertainty	represents:	
	
Measurement	=	(measured	value	±	standard	uncertainty)	(unit	of	measurement)	

	
where	“±	standard	uncertainty”	indicates	approximately	a	68%	conJidence	interval	
(see	sections	on	Standard	Deviation	and	Reporting	Uncertainties).	
	

Example:		Diameter	of	tennis	ball	=	6.7	±	0.2	cm	
 

Estimating	Uncertainty	in	Repeated	Measurements	
	

Suppose	 you	 time	 the	 period	 of	 oscillation	 of	 a	 pendulum	 using	 a	 digital	
instrument	 (that	 you	 assume	 is	 measuring	 accurately)	 and	 Jind	 that	 T	 =	 0.44	
seconds.	This	single	measurement	of	the	period	suggests	a	precision	of	±0.005	s,	but	
this	instrument	precision	may	not	give	a	complete	sense	of	the	uncertainty,	and	you	
should	avoid	reporting	 the	uncertainty	 in	 this	 fashion	 if	possible.	 If	you	repeat	 the	
measurement	several	times	and	examine	the	variation	among	the	measured	values,	
you	can	get	a	better	idea	of	the	uncertainty	in	the	period.	For	example,	here	are	the	
results	of	5	measurements,	in	seconds:	0.46,	0.44,	0.45,	0.44,	0.41.	For	this	situation,	
the	best	estimate	of	the	period	is	the	average,	or	mean:	

	
N

xxx N+++
=

...  (mean) Average 21



Measurements & Uncertainty Analysis 
	
	

 
10 University of North Carolina 
	
	

Whenever	possible,	repeat	a	measurement	several	times	and	average	the	results.	
This	average	is	generally	the	best	estimate	of	the	“true”	value	(unless	the	data	set	is	
skewed	by	one	or	more	outliers	which	should	be	examined	to	determine	if	they	are	
bad	data	points	that	should	be	omitted	from	the	average	or	valid	measurements	that	
require	 further	 investigation).	 Generally,	 the	 more	 repetitions	 you	 make	 of	 a	
measurement,	the	better	this	estimate	will	be,	but	be	careful	to	avoid	wasting	time	
taking	more	measurements	than	is	necessary	for	the	precision	required.	

Consider,	as	another	example,	the	measurement	of	the	width	of	a	piece	of	paper	
using	a	meter	stick.	Being	careful	to	keep	the	meter	stick	parallel	to	the	edge	of	the	
paper	 (to	 avoid	 a	 systematic	 error	 which	 would	 cause	 the	 measured	 value	 to	 be	
consistently	higher	 than	 the	 correct	 value),	 the	width	of	 the	paper	 is	measured	at	
several	points	on	the	sheet,	and	the	values	obtained	are	entered	in	a	data	table.	Note	
that	the	last	digit	is	only	a	rough	estimate,	since	it	is	difJicult	to	read	a	meter	stick	to	
the	nearest	tenth	of	a	millimeter	(0.01	cm)	–	we	retain	the	last	digit	for	now	to	make	
a	point	later.	

Observation	 Width	(cm)	
#1	 31.33	
#2	 31.15	
#3	 31.26	
#4	 31.02	
#5	 31.20	

	
Table	1.	Five	Measurements	of	the	Width	of	a	Piece	of	Paper	

	

	

	
This	average	is	the	best	available	estimate	of	the	width	of	the	piece	of	paper,	but	

it	 is	 not	 exact.	We	would	 have	 to	 average	 an	 inJinite	 number	 of	measurements	 to	
approach	the	true	mean	value,	and	even	then,	we	are	not	guaranteed	that	the	mean	
value	 is	accurate	because	there	 is	still	 likely	some	systematic	uncertainty	 from	the	
measuring	tool,	which	is	difJicult	to	calibrate	perfectly	unless	it	is	the	gold	standard.		
So	how	do	we	express	the	uncertainty	in	our	average	value?	

One	way	to	express	the	variation	among	the	measurements	is	to	use	the	average	
deviation.	 	This	statistic	 tells	us	on	average	(with	50%	conJidence)	how	much	the	
individual	measurements	vary	from	the	mean.	

	
The	 average	 deviation	 is	 a	 sufJicient	 measure	 of	 uncertainty;	 however,	 it	 is	

important	 to	 understand	 the	 distribution	 of	 measurements.	 The	 Central	 Limit	
Theorem	proves	 that	 as	 the	number	of	 independent	measurements	 increases,	 and	
assuming	that	 the	variations	 in	 these	measurements	are	random	(i.e.,	 there	are	no	

Average = sum of observed widths
number of observations

 = 155.96 cm
5

 = 31.19 cm

N
xxxxxxd N ||...||||   Deviation, Average 21 -++-+-
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systematic	 uncertainties),	 the	 distribution	 of	 measurements	 will	 approach	 the	
normal	distribution,	more	commonly	known	as	a	bell	curve.	 In	 this	course,	we	will	
assume	that	our	measurements,	performed	in	sufJicient	number,	will	produce	a	bell	
curve	(normal)	distribution.	In	this	case,	the	standard	deviation	 is	an	alternate	way	
to	 characterize	 the	 spread	 of	 the	 data.	 The	 standard	 deviation	 is	 always	 slightly	
greater	 than	 the	 average	 deviation	 and	 is	 used	 because	 of	 its	 mathematical	
association	with	the	normal	distribution.	

	

Standard	Deviation	
	
To	calculate	the	standard	deviation	for	a	sample	of	N	measurements:	
	
	 1.	Sum	all	the	measurements	and	divide	by	N	to	get	the	average,	aka	mean.	
	 2.	Subtract	this	average	from	each	of	the	N	measurements	to	obtain	N	“deviations.”	
	 3.	Square	each	of	the	N	deviations	and	add	them	together.	
	 4.	Divide	this	result	by	(N–1)	and	take	the	square	root.	
	
To	convert	this	into	a	formula,	let	the	N	measurements	be	called	x1,	x2,	…,	xN.	Let	the	
average	of	the	N	values	be	called	 .	Then	each	deviation	is	given	by	
	

,	for	i	=	1,	2,	...,	N	
	
The	standard	deviation	is	then:	
	

	
	
In	the	meter	stick	and	paper	example,	the	average	paper	width	 	is	31.19	cm.	The	
deviations	are:	
	

Observation	 Width	(cm)	 Deviation	(cm)	
#1	 31.33	 +0.14	 =	31.33	-	31.19	
#2	 31.15	 -0.04	 =	31.15	-	31.19	
#3	 31.26	 +0.07	 =	31.26	-	31.19	
#4	 31.02	 -0.17	 =	31.02	-	31.19	
#5	 31.20	 +0.01	 =	31.20	-	31.19	

	
Table	1	(completed).	Five	Measurements	of	the	Width	of	a	Sheet	of	Paper	
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The	average	deviation	for	this	example	is	 	=	0.09	cm,	whereas	the	standard	
deviation	is:	
	

	
	
	

The	 signiJicance	 of	 the	 standard	 deviation	 is	 this:	 if	 you	 now	make	 one	more	
measurement	 using	 the	 same	meter	 stick,	 you	 can	 reasonably	 expect	 (with	 about	
68%	conJidence)	that	the	new	measurement	will	be	within	0.12	cm	of	the	estimated	
average	of	31.19	cm.	It	is	reasonable	to	use	the	standard	deviation	as	the	uncertainty	
associated	 with	 this	 single	 new	 measurement;	 however,	 the	 uncertainty	 of	 the	
average	value	 is	 the	 standard	deviation	of	the	mean,	 which	 is	 always	 less	 than	 the	
standard	deviation	(see	next	section).	

Consider	an	example	of	100	measurements	of	a	quantity,	 for	which	the	average	
or	mean	value	 is	10.50	and	 the	standard	deviation	 is	s	=	1.83.	Figure	2	below	 is	a	
histogram	 of	 the	 100	 measurements,	 which	 shows	 how	 often	 a	 certain	 range	 of	
values	was	measured.	For	example,	in	20	of	the	measurements,	the	value	was	in	the	
range	9.50	to	10.50,	and	most	of	the	readings	were	close	to	the	mean	value	of	10.50.	
The	standard	deviation	s	 for	 this	set	of	measurements	 is	roughly	how	far	 from	the	
average	 value	most	 of	 the	 readings	 fell.	 For	 a	 large	 enough	 sample,	 approximately	
68%	of	the	readings	will	be	within	one	standard	deviation	(“1-sigma”)	of	the	mean	
value,	95%	of	the	readings	will	be	in	the	interval	 	±	2s	(“2-sigma”),	and	nearly	all	
(99.7%)	 of	 the	 readings	 will	 lie	 within	 3	 standard	 deviations	 (“3-sigma”)	 of	 the	
mean.	The	smooth	curve	superimposed	on	the	histogram	is	the	normal	distribution	
predicted	by	theory	for	measurements	involving	random	errors.	As	more	and	more	
measurements	are	made,	the	histogram	will	better	approximate	a	bell-shaped	curve,	
but	the	standard	deviation	of	the	distribution	will	remain	approximately	the	same.	
	

	
	

	
	

	
Figure	2.	A	Normal	Distribution	(Bell	Curve)	Based	on	100	Measurements	
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Standard	Deviation	of	the	Mean	(Standard	Error)	
	

When	 reporting	 the	 average	 value	 of	 N	 measurements,	 the	 uncertainty	
associated	with	this	average	value	is	the	standard	deviation	of	the	mean,	often	called	
the	standard	error	(SE).	
	

		 (3)	

	
The	standard	error	is	smaller	than	the	standard	deviation	by	a	factor	of	 .	This	
reJlects	 the	 fact	 that	we	expect	 the	uncertainty	of	 the	average	value	 to	get	 smaller	
when	we	use	a	larger	number	of	measurements.	In	the	previous	example,	we	divided	
the	standard	deviation	of	0.12	by	Ö5	to	get	the	standard	error	of	0.05	cm.	The	Jinal	
result	should	then	be	reported	as	“average	paper	width	=	31.19	±	0.05	cm.”	For	this	
example,	the	relative	uncertainty	would	be	(0.05/31.19),	or	≈	0.2%.	

When	to	Use	Standard	Deviation	vs	Standard	Error	
	

For	repeated	measurements,	 the	signiJicance	of	 the	standard	deviation	s	 is	 that	
you	can	reasonably	expect	(with	about	68%	conJidence)	that	the	next	measurement	
will	be	within	s	of	the	estimated	average.	It	may	be	reasonable	to	use	the	standard	
deviation	 as	 the	 uncertainty	 associated	with	 this	measurement;	 however,	 as	more	
measurements	are	made,	 the	value	of	 the	standard	deviation	will	be	reJined	but	 it	
will	 not	 signiJicantly	 decrease	 as	 the	 number	 of	 measurements	 is	 increased;	
therefore,	 it	 will	 not	 be	 the	 best	 estimate	 of	 the	 uncertainty	 of	 a	 set	 of	
measurements.	 In	 contrast,	 if	 you	 are	 conJident	 that	 the	 systematic	 uncertainty	 in	
your	measurement	 is	 very	 small,	 then	 it	 is	 reasonable	 to	 assume	 that	 your	 Jinite	
sample	of	all	possible	measurements	is	not	biased	away	from	the	“true”	value.	In	this	
case,	the	uncertainty	of	the	average	value	can	be	expressed	as	the	standard	deviation	
of	the	mean,	which	is	always	less	than	the	standard	deviation	by	a	factor	of	ÖN.		

	
	

Figure	3.	Standard	Deviation	vs	Standard	Error	

Standard Deviation of the Mean, or Standard Error (SE),   σ x  = s
N

N1
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In	PHYS118	and	119,	we	often	limit	the	number	of	measurements	to	save	time.	
For	a	typical	set	of	3	measurements	(instead	of	5	or	10,	for	example),	the	
normalization	factor	is	Ö3	=	1.73.	Therefore,	the	difference	between	citing	the	
uncertainty	as	the	standard	deviation	or	the	standard	deviation	of	the	mean	is	less	
than	a	factor	of	2.	At	this	level	of	experimentation,	this	discrepancy	is	not	considered	
signiJicant	–	students	may	choose	whichever	calculation	they	are	using	to	calculate	
the	uncertainty	as	long	as	the	method	is	cited.	

Anomalous	Data	
	

The	Jirst	step	you	should	take	in	analyzing	data	(and	even	while	taking	data)	is	to	
examine	the	data	set	as	a	whole	to	look	for	patterns	and	outliers.	Anomalous	data	
points	 that	 lie	 outside	 the	 general	 trend	 of	 the	 data	 may	 suggest	 an	 interesting	
phenomenon	that	could	lead	to	a	new	discovery,	or	they	may	simply	be	the	result	of	
a	mistake	or	random	Jluctuations.	In	any	case,	an	outlier	requires	closer	examination	
to	 determine	 the	 cause	 of	 the	 unexpected	 result.	 Extreme	 data	 should	 never	 be	
“thrown	 out”	 without	 clear	 justiJication	 and	 explanation	 because	 you	 may	 be	
discarding	the	most	signiJicant	part	of	the	investigation!	However,	if	you	can	clearly	
justify	omitting	an	inconsistent	datum,	then	you	may	exclude	the	outlier	from	your	
analysis	 so	 that	 the	 average	 value	 is	 not	 skewed	 from	 the	 “true”	mean.	 There	 are	
several	 statistical	measures	 that	help	quantify	 the	decision	 to	discard	outliers,	but	
they	 are	 beyond	 the	 scope	 of	 this	 document.	 Be	 aware	 of	 the	 possibility	 of	
anomalous	data,	and	address	the	topic	as	needed	in	the	discussion	included	with	a	
lab	report	or	lab	notebook.	

Biases	and	the	Factor	of	N–1	
	

You	 may	 Jind	 it	 surprising	 that	 the	 best	 value	 (average)	 is	 calculated	 by	
normalizing	 (dividing)	 by	 N,	 whereas	 the	 standard	 deviation	 is	 calculated	 by	
normalizing	 to	 N–1.	 The	 reason	 is	 because	 normalizing	 to	 N	 is	 known	 to	
underestimate	 the	 correct	 value	 of	 the	width	 of	 a	 normal	 distribution,	 unless	N	 is	
large.	 This	 underestimate	 is	 referred	 to	 as	 a	 bias	 and	 is	 the	 result	 of	 incomplete	
sampling	 (that	 is,	 the	 population	 of	 measurements,	 or	 sample,	 falls	 short	 of	 the	
entire	population	of	measurements	 that	 could	be	 taken),	 also	known	as	 “sampling	
error.”	If	the	number	of	samples	is	less	than	or	about	10,	even	the	N–1	term	(known	
as	Bessel’s	correction)	 is	known	to	induce	a	bias.	Determining	the	exact	correction	
to	minimize	or	eliminate	bias	depends	on	the	distribution	of	the	data,	and	there	 is	
no	simple	exact	equation	that	can	be	applied;	however,	 for	small	sample	sizes	 that	
are	 quite	 common	 in	 introductory	 physics	 classes,	 a	 correction	 of	N–1.5	 may	 be	
more	appropriate.	If	you	use	a	correction	factor	of	1.5	in	your	lab	reports,	you	must	
make	this	clear	in	your	analysis	and	cite	this	Guide	as	a	reference.	
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SigniFicant	Figures 
	

The	number	of	 signiJicant	 Jigures	 (sig	 Jigs)	 in	a	value	 can	be	deJined	as	all	 the	
digits	between	and	including	the	Jirst	non-zero	digit	 from	the	left,	 through	the	last	
digit.	For	instance,	0.44	has	two	sig	Jigs,	and	the	number	66.770	has	5	sig	Jigs.	Zeroes	
are	 signiJicant	 except	 when	 used	 to	 locate	 the	 decimal	 point,	 as	 in	 the	 number	
0.00030,	which	has	2	sig	Jigs.	Zeroes	may	or	may	not	be	signiJicant	for	numbers	like	
1200,	where	it	is	not	clear	whether	two,	three,	or	four	sig	Jigs	are	indicated.	To	avoid	
this	 ambiguity,	 such	 numbers	 should	 be	 expressed	 in	 scientiJic	 notation	 (e.g.,	
1.20×103	indicates	3	sig	Jigs).	

A	 calculator’s	 display	 will	 often	 show	 many	 digits,	 only	 some	 of	 which	 are	
meaningful	(signiJicant	in	a	different	sense).	For	example,	if	you	want	to	estimate	the	
area	of	a	circular	playing	Jield,	you	might	pace	off	the	radius	to	be	9	meters	and	use	
the	formula	A	=	pr2.	When	you	compute	this	area,	the	calculator	will	report	a	value	of	
254.4690049	m2.	 It	would	be	misleading	 to	 report	 this	 number	 as	 the	 area	of	 the	
Jield,	 because	 it	 would	 suggest	 that	 you	 know	 the	 area	 to	 an	 absurd	 degree	 of	
precision	 –	 to	 within	 a	 fraction	 of	 a	 square	 millimeter!	 Since	 the	 radius	 is	 only	
known	 to	 one	 signiJicant	 Jigure,	 it	 is	 considered	 best	 practice	 to	 also	 express	 the	
Jinal	answer	to	only	one	signiJicant	Jigure:		Area	=	3´102	m2.	

Based	on	this	example,	the	number	of	signiJicant	Jigures	reported	for	a	value	can	
imply	 a	 degree	 of	 precision	 and	 can	 suggest	 a	 rough	 estimate	 of	 the	 relative	
uncertainty:	
	

1	signiJicant	Jigure	may	suggest	a	relative	uncertainty	of	about	10%	to	100%	
2	signiJicant	Jigures	may	suggest	a	relative	uncertainty	of	about	1%	to	10%	
3	signiJicant	Jigures	may	suggest	a	relative	uncertainty	of	about	0.1%	to	1%	

	
To	understand	this	connection	more	clearly,	consider	a	value	with	2	signiJicant	

Jigures,	like	99,	which	might	suggest	an	uncertainty	of	±1,	or	a	fractional	uncertainty	
of	±1/99	=	±1%	(one	could	argue	that	the	implied	uncertainty	in	99	is	±	0.5	since	the	
range	 of	 values	 that	 would	 round	 to	 99	 are	 98.5	 to	 99.4;	 however,	 since	 the	
uncertainty	here	is	only	a	rough	estimate,	there	isn’t	much	point	debating	the	factor	
of	 two).	 The	 smallest	 2-signiJicant-Jigure	 number,	 10,	 also	 might	 suggest	 an	
uncertainty	of	±1,	which	in	this	case	is	a	fractional	uncertainty	of	±1/10	=	±10%.	The	
ranges	for	other	numbers	of	signiJicant	Jigures	can	be	reasoned	in	a	similar	manner.	
	
Warning:	 this	procedure	 is	 open	 to	 a	wide	 range	of	 interpretation;	 therefore,	 one	
should	 use	 caution	 when	 using	 signiJicant	 Jigures	 to	 imply	 uncertainty,	 and	 the	
method	should	only	be	used	if	 there	 is	no	better	way	to	determine	uncertainty.	An	
explicit	warning	to	this	effect	should	accompany	the	use	of	this	method	in	an	exam	
or	submitted	lab	work.	
	
Subject	 to	 the	 above	 warning,	 signiJicant	 Jigures	 can	 be	 used	 to	 Jind	 a	 possibly	
appropriate	precision	for	a	calculated	result	for	the	four	most	basic	math	functions.	
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• For	multiplication	and	division,	the	number	of	signiJicant	Jigures	that	are	

reliably	known	in	a	product	or	quotient	is	the	same	as	the	smallest	number	of	
signiJicant	Jigures	in	any	of	the	original	numbers.	

	
Example:	 	 6.6	 	 			 	 (2	signiJicant	Jigures)	
	 	 	 ×	7328.7	 	 			 (5	signiJicant	Jigures)	
	 	 	 48369.42	=	48	x	103	 			 (2	signiJicant	Jigures)	
	

• For	addition	and	subtraction,	the	result	should	be	rounded	off	to	the	last	
decimal	place	reported	for	the	least	precise	number.	

	
	
Examples:	 	 223.64		 	 5560.5	
	 	 	 +54	 		 	 +0.008	
	 	 	 278	 	 	 5560.5	
	
Critical	 Note:	 if	 a	 calculated	 number	 is	 to	 be	 used	 in	 further	 calculations,	 it	 is	
mandatory	to	keep	guard	digits	to	reduce	rounding	errors	that	may	accumulate.	The	
Jinal	answer	can	then	be	rounded	according	to	the	above	guidelines.	The	number	of	
guard	digits	required	to	maintain	the	integrity	of	a	calculation	depends	on	the	type	
of	 calculation.	 For	 example,	 the	 number	 of	 guard	 digits	 must	 be	 larger	 when	
performing	power	law	calculations	than	when	adding.	
	

Uncertainty,	SigniFicant	Figures,	and	Rounding	
	
For	 the	 same	 reason	 that	 it	 is	 dishonest	 to	 report	 a	 result	 with	 more	 signiJicant	
Jigures	 than	are	reliably	known,	 the	uncertainty	value	should	also	not	be	reported	
with	excessive	precision.	For	example,	it	would	be	unreasonable	to	report	a	result	in	
the	following	way:	
	

measured	density	=	8.93	±	0.475328	g/cm3	 INCORRECT!	
	
The	uncertainty	in	the	measurement	cannot	possibly	be	known	so	precisely!	In	most	
experimental	work,	 the	 conJidence	 in	 the	 uncertainty	 estimate	 is	 not	much	better	
than	about	±50%	because	of	all	 the	various	sources	of	error,	none	of	which	can	be	
known	exactly.	
	

Therefore,	unless	explicitly	justiFied,	uncertainty	values	should	be	stated	
(rounded)	to	one	signiFicant	Figure.		
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To	help	give	a	sense	of	the	amount	of	conJidence	that	can	be	placed	in	the	standard	
deviation	 as	 a	 measure	 of	 uncertainty,	 the	 following	 table	 indicates	 the	 relative	
uncertainty	 associated	with	 the	 standard	 deviation	 for	 various	 sample	 sizes.	Note	
that	for	a	standard	deviation	to	be	reported	to	a	precision	of	3	signiAicant	Aigures,	more	
than	10,000	readings	would	be	required!	
	

N	 Relative	
Uncertainty*	

SigniJicant		
Figures	Valid	

Implied	
Uncertainty	

2	 71%	 1	 ±10%	to	100%	
3	 50%	 1	 ±	10%	to	100%	
4	 41%	 1	 ±	10%	to	100%	
5	 35%	 1	 ±	10%	to	100%	
10	 24%	 1	 ±	10%	to	100%	
20	 16%	 1	 ±	10%	to	100%	
30	 13%	 1	 ±	10%	to	100%	
50	 10%	 2	 ±	1%	to	10%	
100	 7%	 2	 ±	1%	to	10%	
10000	 0.7%	 3	 ±0.1%	to	1%	

	
Table	2.	Valid	SigniFicant	Figures	in	Uncertainties	

	
*The	relative	uncertainty	in	the	standard	deviation	is	given	by	
the	approximate	formula:	
	
	

When	an	explicit	uncertainty	estimate	is	made	using	the	standard	deviation,	the	
uncertainty	 term	 indicates	how	many	signiJicant	 Jigures	should	be	reported	 in	 the	
measured	 value	 (not	 the	 other	way	 around!).	 For	 example,	 the	 uncertainty	 in	 the	
density	measurement	above	is	about	0.5	g/cm3,	which	suggests	that	the	digit	in	the	
tenths	place	is	uncertain	and	should	be	the	last	one	reported.	The	other	digits	in	the	
hundredths	place	and	beyond	are	insigniJicant,	and	should	not	be	reported:	
	

measured	density	=	8.9	±	0.5	g/cm3	 CORRECT!	
	

An	experimental	value	should	be	rounded	to	be	consistent	with	the	magnitude	of	
its	uncertainty.	This	generally	means	that	the	last	signiJicant	Jigure	in	any	reported	
value	 should	 be	 in	 the	 same	 decimal	 place	 as	 the	 uncertainty,	 and	 unless	 many	
measurements	have	been	taken,	the	uncertainty	should	be	reported	to	only	one	sig	
Jig.	

In	 most	 instances,	 this	 practice	 of	 rounding	 an	 experimental	 result	 to	 be	
consistent	 with	 the	 uncertainty	 estimate	 gives	 the	 same	 number	 of	 signiJicant	
Jigures	 as	 the	 rules	 discussed	 earlier	 for	 simple	 propagation	 of	 uncertainties	 for	
adding,	subtracting,	multiplying,	and	dividing.	
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When	conducting	an	experiment,	it	is	important	to	keep	in	mind	that	precision	is	
expensive	 (both	 in	 terms	of	 time	 and	material	 resources).	Do	not	waste	 your	 time	
trying	 to	 obtain	 a	precise	 result	when	only	 a	 rough	 estimate	 is	 required.	The	 cost	
increases	 exponentially	 with	 the	 amount	 of	 precision	 required,	 so	 the	 potential	
beneJit	of	this	precision	must	be	weighed	against	the	extra	cost.	
	
Important	 Notes	 about	 sig	 Jigs	 when	 interpreting	 both	 this	 guide	 and	 course	
materials:	
	
a) On	 exams,	 homeworks,	 or	 solutions,	 you	may	 see	 a	 quantity	 cited	 imprecisely	

(for	 example,	 “1200	 m”	 instead	 of	 “1200.0	 m”).	 This	 is	 typically	 done	 for	
readability	and	does	not	imply	anything	about	uncertainty	unless	the	quantity	is	
tied	explicitly	to	an	experiment.	You	may	consider	such	values	to	be	exact.		

	
b) In	contrast,	you	may	see	examples	or	solutions	that	appear	to	retain	an	excessive	

number	of	sig	Jigs	(including	in	this	document).	Such	examples	may	have	skipped	
the	 Jinal	 rounding	 step	 for	 either	 clarity	 or	 readability.	 Often,	 these	 examples	
retain	 higher	 precision	 to	 help	 you	 ascertain	 that	 you	 have	 duplicated	 a	
calculation	correctly,	or	to	distinguish	them	from	incorrect	solutions	that	happen	
to	be	close	to	the	correct	answer.	Again,	unless	such	examples	are	tied	explicitly	
to	 an	 uncertainty,	 you	 may	 ignore	 such	 inconsistencies;	 however,	 when	 you	
present	 an	 answer	 on	 an	 assignment	 or	 exam,	 you	 should	 minimize	 your	
uncertainty	precision	to	one	sig	Jig	unless	otherwise	directed	or	justiJied.	

	
c) Similarly,	 if	 an	 experiment	 described	 on	 an	 exam	or	 homework	 claims	 to	 have	

more	 than	one	sig	 Jig	 in	 the	uncertainty	and	you	are	not	asked	 to	address	 this	
aspect	of	the	experiment,	take	the	uncertainty	precision	at	face	value	as	correct.	

	
d) 	Normally,	 when	 reviewing	 experimental	 questions	 (such	 as	 are	 found	 on	 the	

practicum	or	lab	reports),	graders	scrutinize	your	use	of	more	than	1	sig	Jig	when	
citing	uncertainty.	One	exception	has	already	been	discussed	and	is	embodied	in	
Table	2:	if	enough	samples	have	been	collected	to	justify	2	sig	Jigs,	then	this	must	
be	explicitly	discussed	in	your	presentation.	A	second	exception	could	be	when	
the	 leading	 signiJicant	 Jigure	 is	 a	 “1”	 –	 it	 is	 possible	 to	 induce	 a	 bias	 when	
rounding	 to	 one	 sig	 Jig	 in	 this	 case.	 Consider	 the	 example	 of	 rounding	 ±1.4	 as	
opposed	to	±9.4,	to	one	sig	Jig.	The	value	of	±1.0	represents	a	40%	discrepancy	
from	±1.4	 (very	 large),	whereas	 the	value	of	±9.0	represents	a	4%	discrepancy	
from	±9.4	(much	smaller,	albeit	nonzero).	The	best	approach	here,	as	for	virtually	
all	 exam	 and	 assignment	 examples,	 is	 to	 cite	 and	 discuss	 the	 high	 precision	
answer,	which	 indicates	 that	 you	 know	 the	 details	 of	 the	 calculation,	 and	 then	
cite	and	discuss	your	Jinal	answer	with	suitable	rounding	and	justiJication.		

	
Practical	tips	for	measuring	and	citing	uncertainty,	and	uncertainty	calculation	

examples,	can	be	found	in	Appendix	II.	  
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Propagation	of	Uncertainty	
	
In	 this	 document	 and	 in	 the	 literature,	 uncertainties	 can	 be	 mathematically	
expressed	in	different	styles	–	common	choices	include	sx,	sy,	sz,	st,	etc,	or	δx,	δy,	δz,	
δt,	etc.	You	may	encounter	either	style	in	this	document.	The	symbol	“Δ”	can	often	be	
seen	 as	well;	 however,	we	will	 reserve	 “Δ”	 for	 its	 tradition	meaning	 of	 “difference	
between”	as	opposed	to	“small	change	in”	or	“uncertainty	in.”		
	
Imagine	that	we	have	a	result	f	that	depends	on	other	variables	such	as	x,	y,	z,	t,	etc.	
(for	example,	f	equals	x	divided	by	y,	or	f	=	some	constant	multiplied	by	t	and	added	
to	z).	We	want	to	Jind	the	uncertainty	in	f	if	each	of	the	measured	quantities	x,	y,	z,	t	
has	its	own	uncertainty.	That	is,	we	want	to	Jind	out	how	the	uncertainty	in	one	set	
of	 variables	 (usually	 the	 independent	 variables	 x,	 y,	 z,	 t)	 propagates	 to	 the	
uncertainty	in	another	set	of	variables	(usually	the	dependent	variable	f).	There	are	
two	primary	methods	of	performing	this	propagation	procedure:	
	

• upper-lower	bound	
• quadrature	

	
The	upper-lower	bound	method	is	simpler	in	concept,	but	tends	to	overestimate	the	
uncertainty,	 while	 the	 quadrature	 method	 is	 more	 sophisticated	 but	 provides	 a	
better	statistical	estimate	of	the	uncertainty.	The	Physics	118/119	courses	focus	on	
the	 upper-lower	 bound	 (ULB)	 estimate.	 The	 Physics	 281L	 course	 focuses	 on	
quadrature;	 however,	 students	 in	 118/119	 are	 allowed	 if	 not	 encouraged	 to	 learn	
and	 use	 quadrature.	 In	 addition,	 quadrature	 forms	 the	 basis	 for	 combining	
uncertainties,	which	will	be	covered	in	an	upcoming	section	of	the	guide.	
	

The	Upper-Lower	Bound	Method	of	Uncertainty	Propagation	
	

This	 method	 uses	 the	 uncertainties	 of	 each	 variable	 x,	 y,	 z,	 t	 to	 calculate	 the	
maximum	 and	 minimum	 values	 of	 the	 quantity	 f.	 You	 can	 also	 think	 of	 this	
procedure	 as	 examining	 the	worst-case	 scenario.	 As	 a	 Jirst	 example,	 consider	 the	
division	of	two	variables	–	a	common	example	is	the	calculation	of	average	speed:	
	

	
	

Let’s	say	an	experiment	is	done	repeatedly	and	measures	a	distance	traveled	of	
Δx	=	30	±	0.5	m	during	a	time	of	Δt	=	2	±	0.1	sec.	To	Jind	the	upper	and	lower	bound	
of	vavg,	 the	uncertainties	must	be	 chosen	 to	 create	 the	worst-case	 scenario	 for	 the	
uncertainty	in	vavg;	note	that	this	choice	requires	making	the	numerator	as	large	as	
possible	and	the	denominator	as	small	as	possible	for	the	upper	bound	(max),	and	
vice	versa	for	the	lower	bound	(min):	
	

vavg = Δx / Δt
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The	best	(expected)	value	for	the	average	speed	is	30/2	=	15.00	m/s.	The	upper	

bound	is	1.05	m/s	higher	but	the	lower	bound	is	0.95	m/s	lower	(different	from	1.05	
–	this	asymmetry	is	a	typical	outcome	when	using	the	upper-lower	bound	method).	
The	uncertainty	should	be	expressed	as	the	most	conservative	value.	Thus:	
	
	 	 	 vavg	=	15.00	±	1.05	m/s	 	 PREFERRED!	
	
Note	that	it	is	not	correct	to	take	the	difference	and	divide	by	two:	
	
	 	 	 vavg	=	15.05	±	1.00	m/s	 	 NOT	PREFERRED!	
	

Although	 the	 last	 result	 satisJies	 symmetry	 between	 the	 bounds,	 it	 explicitly	
calculates	an	incorrect	value	of	the	best-known	expected	value	of	the	average	speed.		

Many	 times,	 the	 difference	 between	 the	 so-called	 “preferred”	 and	 the	 “not	
preferred”	approaches	is	not	signiJicant	enough	to	be	an	issue.	Citing	the	uncertainty	
in	 this	 example	 to	 3	 sig	 Jigs	 would	 require	 a	 strong	 justiJication.	 The	 accepted	
approach	(and	the	one	that	should	be	followed	in	the	absence	of	such	justiJication)	is	
to	round	to	15.0	±	1.1	m/s,	and	then	round	again	to	15	±	1	m/s.	With	this	approach,	
arguments	 about	 whether	 the	 “actual	 answer”	 is	 15.00	 or	 15.05	 are	 irrelevant,	
because	the	experiment	does	not	justify	such	precision.		

This	asymmetry	arises	 in	the	case	of	non-linear	 functions	as	well.	For	example,	
suppose	you	measure	an	angle	to	be	q	=	25°	±	1°	and	you	need	to	Jind	f	=	cosq:	
	
fmin	=	cos(26°)	=		0.8988	 		f	=	cos(25°)	=		0.9063	 fmax	=	cos(24°)	=		0.9135	

	
The	 differences	 are	 f–fmin	 =	 0.0075	 and	 fmax–f	 =	 0.0072.	 When	 rounding	 the	
uncertainty	to	1	sig	Jig,	the	most	conservative	value	should	be	chosen	(0.008).	Thus,	
the	 answer	 would	 be	 cited	 as	 f	 =	 0.906	 ±	 0.008.	 Note	 the	 following	 about	 this	
example:	
	

• the	maximum	q		is	associated	with	the	minimum	f,	and	vice	versa	
• guard	digits	are	retained	to	make	informed	choices	about	the	Jinal	answer	
• although	q		was	only	measured	to	2	sig	Jigs,	f	is	known	to	3	sig	Jigs		

	
Next	 consider	 the	 more	 general	 case	 where	 we	 measure	 something	 about	 a	

functional	 relationship	between	two	variables	such	as	speed	and	time.	As	a	simple	
example,	 consider	 the	 kinematic	 function	 v	 =	 v0	 +	 at,	 where	 v	 is	 the	 speed	 of	 an	
object	at	time	t	when	the	object	undergoes	constant	acceleration	a	and	starts	with	
an	initial	speed	of	v0.	

If	we	 record	multiple	 values	of	v	 and	 t,	we	 can	 create	 a	plot	of	 those	data	 and	
determine	 both	 the	 slope	 (a)	 and	 its	 uncertainty	 and	 the	 intercept	 (v0)	 and	 its	

vavg−max =
30 + 0.5 m
2 – 0.1 sec

 = 16.05 m/s vavg−min =
30 – 0.5 m
2 + 0.1 sec

 = 14.05 m/s
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uncertainty.	Later	in	this	document	we	will	see	how	to	Jind	the	slope	and	intercept,	
but	here	 let’s	assume	that	this	procedure	Jinds	a	value	of	a	=	30±2	cm/s2	and	v0	=	
2±0.5	cm/s.	If	we	then	ask	what	the	expected	speed	and	its	uncertainty	is	for	a	value	
of	t	=	3	seconds,	we	can	predict	that	
	

vupper	=	(32	cm/s2)(3	s)	+	2.5	m/s	=	98.5	cm/s	
v								=	(30	cm/s2)(3	s)	+	2.0	m/s	=	92	cm/s	
vlower	=	(28	cm/s2)(3	s)	+	1.5	m/s	=	85.5	cm/s	

	
Our	Jinal	answer	for	the	speed	at	3	seconds	(after	rounding)	would	therefore	be	v	=	
92	±	7	cm/s.	

Note	 that	 we	 did	 not	 include	 an	 uncertainty	 for	 the	 3-second	 mark	 –	 this	 is	
because	 the	 functional	 relationship	 maps	 inputs	 to	 outputs	 where	 the	 model	
(characterized	by	a	slope	and	intercept)	is	uncertain.	Our	premise	is	that	the	speed	
can	 be	 modeled	 as	 v	 =	 v0	 +	 at,	 and	 our	 experimental	 procedure	 discovered	 the	
uncertainties	 in	 the	 model	 (namely,	 the	 uncertainties	 in	 v0	 and	 a).	 With	 those	
uncertainties	 being	 known,	 we	 have	 used	 the	model	 to	 predict	 speeds	 at	 speciJic	
times;	the	speciJic	times	are	theoretical	and	have	no	uncertainties	per	se.	That	said,	
if	 the	 question	 does	 involve	 any	 uncertainty	 in	 the	 time,	 this	 uncertainty	 can	
straightforwardly	 be	 included	 in	 the	 same	 ULB	 fashion	 to	 further	 determine	 the	
impact	on	the	values	of	speed.	

We	 can	 extend	 this	 idea	 to	 any	 linear	 relationship,	which	 can	 be	 expressed	 as													
y	=	mx	+	b,	where	any	of	the	variables	in	the	equation	could	have	some	uncertainty.	
We	wish	to	Jigure	out	what	the	uncertainty	is	in	y	when	we	know	the	uncertainties	
in	m	 (±δm),	 x	 (±δx),	 and	 b	 (±δb).	 Applying	 the	 general	 ULB	 approach,	 we	 get	 a	
straightforward	result:	
	

	

	
Later	you	will	learn	how	to	Jind	m,	δm,	b,	and	δb	from	linear	regression	techniques	
when	given	a	set	of	data	{x,	y}.	Once	the	values	of	m	and	b	are	known,	they	can	be	
used	to	straightforwardly	predict	a	value	yi	and	its	uncertainty	when	given	a	value	xi	
and	its	uncertainty	δxi.	
	
The	ULB	method	is	especially	useful	when	the	functional	relationship	is	not	clear	or	
is	 incomplete.	 One	 practical	 application	 is	 forecasting	 the	 expected	 range	 in	 an	
expense	 budget.	 In	 this	 case,	 some	 expenses	may	 be	 Jixed	 (no	 uncertainty),	while	
others	may	be	uncertain;	the	range	of	these	uncertain	terms	could	be	used	to	predict	
the	upper	and	lower	bounds	on	the	total	expense.	
	

The	Appendix	includes	a	variety	of	example	calculations	of	ULB	uncertainties.	
	

yupper = (m +δm)(x +δ x)+ (b +δb)
ylower = (m −δm)(x −δ x)+ (b −δb)
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The	Quadrature	Method	of	Uncertainty	Propagation	
	

The	ULB	method	described	above	has	one	signiJicant	shortcoming	–	it	invariably	
overestimates	 the	 propagation	 of	 uncertainty	 in	 measurements	 by	 assuming	 a	
“worst-case	 scenario”	 where	 any	 single	 measurement	 can	 be	 at	 the	 extremes	 of	
expectations.	 But	 measurements	 are	 inherently	 “statistical”	 in	 that	 they	 are	
sometimes	 closer	 to	 expectations	 and	 sometimes	 further	 from	 expectations	 –	 in	
other	words,	they	aren’t	always	extremes,	and	therefore	describing	the	propagation	
of	 uncertainty	 as	 an	 extreme	 isn’t	 appropriate	 –	we	 can	 do	 better.	 A	 variety	 of	
techniques	 can	 provide	 better	 estimates	 of	 true	 propagation	 of	 uncertainty	 –	the	
quadrature	method	is	one	such	statistically	valid	way	to	estimate	the	propagation	of	
uncertainty.	The	quadrature	method	has	several	additional	advantages	over	the	ULB	
method:		
	

• Quadrature	is	signiJicantly	easier	to	apply	to	complex	models	that	obscure	an	
easy	application	of	the	ULB	method.	

• Quadrature	easily	generalizes	to	multiple	variables.	
• Quadrature	provides	an	approach	to	combining	unrelated	uncertainties.	This	

feature	is	the	most	important	one	for	our	purposes.	
	

The	 quadrature	 method	 yields	 a	 standard	 uncertainty	 estimate	 (with	 a	 68%	
conJidence	 interval)	 and	 is	 especially	 useful	 and	 effective	 in	 the	 case	 of	 several	
variables	 that	 weight	 the	 uncertainty	 non-uniformly.	 Our	 approach	 uses	 the	
fundamental	 principles	 of	 calculus;	 the	 method	 is	 derived	 with	 several	 examples	
shown	below.		

For	 a	 single-variable	 function	 f	 (x),	 a	 small	 change	 in	 f	 (δf,	 known	 as	 the	
differential)	can	be	related	to	the	deviation	in	x	as	follows:	
	

	
	
Taking	the	square	and	the	average	yields:	
	

	
	
We	now	deJine	the	uncertainty	in	f	as	the	magnitude	of	this	differential,	and	refer	to	
it	symbolically	as	σ:	

	
	
Two	examples	where	f	 is	a	power	law	are	shown	below	(square	root	and	power	of	
two).	 We	 start	 with	 the	 target	 power-law	 function	 f	 (top),	 consider	 how	 small	
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changes	in	x	affect	small	changes	in	f	(middle),	and	Jinally	end	up	with	a	relationship	
between	the	relative	uncertainty	in	x	and	the	relative	uncertainty	in	f	(bottom):	
	

f	=	Öx	 f	=	x2	

	 	

		or		 	 	

	
Note	 that	 the	 Jinal	 normalization	 (division	 by	 f)	 makes	 it	 easy	 to	 express	 the	

relative	 (fractional)	 uncertainty	 in	 one	 variable	 (x)	 as	 a	 relative	 (fractional)	
uncertainty	 in	 another	 (f)	 –	 this	 is	what	we	mean	by	 “propagation.”	Note	 that	 the	
weighting	is	directly	related	to	the	power	exponent	of	the	function:	
	

• For	the	square	root,	the	relative	uncertainty	in	f	is	half	that	in	x.	
• For	the	power	of	2,	the	relative	uncertainty	in	f	is	twice	that	in	x.	

	
These	 power	 law	 expressions	 are	 the	 most	 important	 ones	 to	 know	 for	 most	

modules	 of	 PHYS118/119.	 Now	 let	 us	 reconsider	 the	 trig	 example	 from	 the	 ULB	
section	of	the	document	above.	Our	goal	is	to	propagate	the	uncertainty	in	θ	to	the	
uncertainty	 in	 cosθ.	We	 start	with	 the	 target	 function	 f	 (left),	 consider	 how	 small	
changes	in	θ	affect	small	changes	in	f	(middle),	and	Jinally	end	up	with	a	relationship	
between	the	relative	uncertainty	in	theta	and	the	relative	uncertainty	in	cosθ	(right).	

	

f	=	cosq	
	 	

 
Note	that	in	this	situation,	sq		must	be	in	radians.	For	q	=	25°	±	1°	(0.727	±	0.017	rad)	
	

sf		=	|sinq|sq	=	(0.423)(p/180)	=	0.0074					
	
This	is	essentially	the	same	result	as	ULB	method.	The	fractional	uncertainty	follows	
immediately	as:	

	 	 	 	 	 	

	
These	 examples	 are	 straightforward	 and	 are	 little	 different	 than	 applying	 the	

ULB	method.	The	deeper	power	of	 the	quadrature	method	becomes	evident	 in	 the	
case	 where	 f	 depends	 on	 two	 or	 more	 variables;	 the	 derivation	 above	 can	 be	
repeated	with	minor	modiJications.	For	two	variables,	f(x,	y):	
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Here	 we	 have	 introduced	 the	 “partial	 derivative.”	 The	 partial	 derivative	 ∂f/∂x	
means	 differentiating	 f	 with	 respect	 to	 x,	 while	 holding	 the	 other	 variables	 Jixed.	
Taking	 the	 square	 and	 the	 average	 yields	 the	 generalized	 law	 of	 propagation	 of	
uncertainty	by	quadrature	(for	two	variables):	
	

	

	
If	the	measurements	of	x	and	y	are	uncorrelated,	 then	 ,	and	this	reduces	to	
its	most	commonly	cited	form:	
	

	

	
This	form	is	known	either	as	the	“root	sum	of	squares”	(RSS)	or	“adding	in	
quadrature”	and	is	the	basis	for	comprehensive	approaches	to	combined	

uncertainty	propagation.	
	
	

Addition	and	Subtraction	Example:	 	 f	=	x	±	y	
	

	
	
The	independence	of	the	operation	(doesn’t	matter	whether	the	function	is	addition	or	

subtraction)	is	a	signiAicant	simpliAication	compared	to	ULB.	
	
Multiplication	example:	 	 	 f	=	xy	
	

	

	
	 Dividing	the	above	equation	by	f	=	xy	yields:	
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Division	example:	 	 	 f	=	x/y	
	

	

	
	 Dividing	the	previous	equation	by	f	=	x/y	yields:	
	

	
	

Note	that	the	relative	uncertainty	 in	 f	has	the	same	form	for	multiplication	and	
division:	 the	 relative	 uncertainty	 in	 a	 product	 or	 quotient	 depends	 only	 on	 the	
relative	uncertainty	of	each	individual	term.	Just	as	for	addition	and	subtraction,	this	
independence	 of	 the	 operation	 (doesn’t	 matter	 whether	 the	 function	 is	 division	 or	
multiplication)	is	a	signiAicant	simpliAication	compared	to	ULB.	

Note	 also	 that	 adding	 or	 subtracting	 a	 Aixed	 constant	 does	 not	 change	 the	
absolute	uncertainty	of	the	calculated	value	because,	by	deJinition,	a	constant	value	
has	no	uncertainty.	Likewise,	multiplying	or	dividing	by	a	constant	does	not	change	
the	relative	uncertainty	of	the	calculated	value.		

The	 results	 for	 the	 four	operations	of	 addition,	 subtraction,	multiplication,	 and	
division	 are	 summarized	 in	 the	 following	 table,	 when	 the	 measurements	 are	
uncorrelated	(independent):	
	

Operation	 Final	Propagated	Uncertainty	

Addition/Subtraction	
Absolute	propagated	uncertainty	is	
quadrature	addition	of	individual	

absolute	uncertainties	

Multiplication/Division	
Relative	propagated	uncertainty	is	
quadrature	addition	of	individual	

relative	uncertainties	
	

If	 the	 measurements	 are	 correlated,	 the	 absolute	 or	 relative	 uncertainties	 are	
straightforwardly	added	(not	in	quadrature).	The	result	is	always	larger	than	adding	
in	 quadrature.	 Correlated	 measurements	 are	 considered	 in	 higher	 level	 physics	
courses	 and	 will	 not	 be	 addressed	 in	 PHYS118/119.	 The	quadrature	propagation	
equation	for	arbitrary	power	laws	is	derived	in	Appendix	I.	

As	a	more	concrete	example,	consider	propagating	the	uncertainty	in	the	speed			
v	=	at,	where	the	acceleration	is	a	=	9.8	±	0.1	m/s2	and	the	time	is	t	=	1.2	±	0.1	s.	
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Notice	 that	 the	 relative	uncertainty	 in	 t	 (2.9%)	 is	 signiJicantly	greater	 than	 the	
relative	 uncertainty	 for	 a	 (1.0%),	 and	 therefore	 the	 relative	 uncertainty	 in	 v	 is	
essentially	the	same	as	for	t	(about	3%).	
	
Graphically,	the	RSS	is	like	the	Pythagorean	theorem:	
The	total	uncertainty	is	the	length	of	the	hypotenuse	of	a	right	
triangle	with	legs	the	length	of	each	uncertainty	component.	
	
	
Timesaving	approximation:	“A	chain	is	only	as	strong	as	its	weakest	link.”	
	

If	one	of	the	uncertainty	terms	is	more	than	3	times	greater	than	the	other	terms,	
the	 root-squares	 formula	 can	 be	 skipped,	 and	 the	 combined	uncertainty	 is	 simply	
the	 largest	 uncertainty.	 This	 shortcut	 can	 save	 a	 lot	 of	 time	 without	 losing	 any	
accuracy	in	the	estimate	of	the	overall	uncertainty.	
	

Combining	and	Reporting	Uncertainties	
	
In	general,	uncertainties	come	in	two	different	forms:		
	

1. Type	A	Uncertainties	are	randomly	distributed,	due	to	normal	statistical	
Jluctuations	in	a	series	of	observations.	These	uncertainties	are	quantiJied	
using	statistical	techniques	such	as	the	standard	deviation	of	the	mean.	
Examples	include:	

a. Electronic	noise	in	the	sensors	used	for	measurement.	
b. Random	variability	in	measurement	(e.g.,	human	reaction	time	when	

multiple	observers	use	multiple	stopwatches).	
2. Type	B	Uncertainties	are	systematic,	due	to	some	non-statistical	bias	that	

may	or	may	not	change	as	observations	are	made.	These	uncertainties	cannot	
be	quantiJied	using	statistical	techniques	and	often	depend	on	“available	
knowledge.”	Examples	include:	

a. Offsets	in	sensors	used	for	measurement	(e.g.,	parallax	when	reading	a	
meter	stick).	

b. Human	reaction	time	(e.g.,	multiple	observers	with	multiple	
stopwatches	all	of	which	run	slow)	

c. Unknown	instrumental	effects	(e.g.,	uncalibrated	electronic	
equipment	properly)	

d. Instrument	precision	limitations.	
e. Other	effects	due	to	the	environment,	error,	or	poor	experimental	

design.	
	
Note:	do	not	confuse	“Type	A	or	B	Uncertainties”	with	“Type	I	or	Type	II	Errors.”	The	
latter	are	the	false-positive	and	false-negative	rates	that	occur	in	hypothesis	testing.	
	

1.0% 
3.1% 

2.9% 
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The	 above	 descriptions	 were	 Jirst	 detailed	 in	 1993,	 when	 the	 International	
Standards	 Organization	 (ISO)	 published	 the	 Jirst	 ofJicial	 worldwide	 Guide	 to	 the	
Expression	of	Uncertainty	 in	Measurement.	 Before	 this	 time,	 uncertainty	 estimates	
were	 evaluated	and	 reported	according	 to	different	 conventions	depending	on	 the	
context	of	the	measurement	or	the	scientiJic	discipline.	The	key	point	from	this	100-
page	 guide,	 which	 can	 be	 found	 in	 modiJied	 form	 on	 the	 NIST	 website	 (see	
References),	is	the	following:	

The	 uncertainty	 of	 a	measurement	 should	 be	 reported	 as	 the	 total	 combined	
standard	 uncertainty	 Uc,	 which	 is	 found	 by	 adding	 all	 Type	 A	 and	 Type	 B	
uncertainty	components	in	quadrature.	This	combined	standard	uncertainty	should	
be	equivalent	to	the	standard	deviation	of	the	result,	making	this	uncertainty	value	
correspond	with	a	68%	conJidence	interval.	If	a	wider	conJidence	interval	is	desired,	
the	 uncertainty	 can	 be	 multiplied	 by	 a	 coverage	 factor	 (usually	 k	 =	 2	 or	 3)	 to	
provide	 an	 uncertainty	 range	 that	 is	 believed	 to	 include	 the	 true	 value	 with	 a	
conJidence	of	95%	(for	k	=	2)	or	99.7%	(for	k	=	3).		If	a	coverage	factor	is	used,	there	
should	 be	 a	 clear	 explanation	 of	 its	meaning	 so	 there	 is	 no	 confusion	 for	 readers	
interpreting	the	signiJicance	of	the	uncertainty	value.	

Be	 aware	 that	 the	 ±	 uncertainty	 notation	 might	 be	 used	 to	 indicate	 different	
conJidence	intervals,	depending	on	the	scientiJic	discipline	or	context.	For	example,	
a	 public	 opinion	poll	may	 report	 that	 the	 results	 have	 a	margin	of	error	 of	±3%,	
which	 means	 that	 readers	 can	 be	 95%	 conJident	 (not	 68%	 conJident)	 that	 the	
reported	 results	 are	 accurate	within	 3	 percentage	 points.	 Similarly,	 an	 equipment	
manufacturer’s	 tolerance	 rating	 generally	 assumes	 a	 95%	 or	 99%	 level	 of	
conJidence.	

	
	
		

Measurements	and	Their	Agreement	
	

We	now	have	the	resources	to	answer	a	fundamental	scientiJic	question	at	the	
heart	of	scientiJic	experimentation:	“Does	my	result	agree	with	a	theoretical	
prediction	or	results	from	other	experiments?”	

A	 measured	 result	 agrees	 with	 a	 theoretical	 prediction	 if	 the	 prediction	 lies	
within	the	range	of	experimental	uncertainty.	Similarly,	if	two	measured	values	have	
standard	 uncertainty	 ranges	 that	 overlap,	 then	 the	 measurements	 are	 said	 to	 be	
consistent	 (they	 agree).	 If	 the	 uncertainty	 ranges	 do	 not	 overlap,	 then	 the	
measurements	 are	 said	 to	be	discrepant	 (they	do	not	 agree).	However,	 you	 should	
recognize	 that	 these	overlap	 criteria	 can	give	 two	opposite	 answers	depending	on	
the	 evaluation	 and	 conJidence	 level	 of	 the	 uncertainty.	 It	 would	 be	 unethical	 to	
arbitrarily	inJlate	the	uncertainty	range	just	to	make	a	measurement	agree	with	an	
expected	value.	 	A	better	procedure	would	be	 to	discuss	 the	 size	of	 the	difference	
between	 the	measured	 and	 expected	 values	within	 the	 context	 of	 the	 uncertainty	
and	try	to	discover	the	source	of	the	discrepancy	if	the	difference	is	truly	signiJicant.	
Example:		
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A	=	1.2	±	0.4	
B	=	1.8	±	0.4	
	
	
	
	

These	measurements	agree	within	their	uncertainties,	even	though	the	percent	
difference	 between	 their	 central	 values	 is	 40%.	 In	 contrast,	 if	 the	 uncertainty	 is	
halved	(±0.2),	these	same	measurements	do	not	agree	since	their	uncertainties	do	
not	overlap	(Jigure	on	next	page):	
	
	
	
	
	
	
	
	
	
	

If	two	measurements	(with	similar	uncertainties,	each	represented	by	±1	sigma)	
barely	 overlap,	 then	 they	 differ	 by	 approximately	 2-sigma,	 which	 means	 there	 is	
about	 a	 5%	 chance	 that	 the	 measurements	 agree.		 When	 two	 values	 differ	 by	 3-
sigma	or	more,	 it	 is	highly	unlikely	 (less	 than	1%	chance)	 that	 they	agree,	and	we	
would	 conclude	with	 conJidence	 that	 there	 is	 a	 discrepancy.	 Further	 investigation	
would	 be	 needed	 to	 determine	 the	 cause	 for	 the	 discrepancy.	 Perhaps	 the	
uncertainties	were	underestimated,	there	may	have	been	a	systematic	error	that	was	
not	considered,	or	there	may	be	a	true	difference	between	these	values.	

An	alternative	method	for	determining	agreement	between	values	is	to	calculate	
the	difference	between	the	values	divided	by	their	combined	standard	uncertainty.	
This	ratio	gives	the	number	of	standard	deviations	separating	the	two	values.	If	this	
ratio	is	approximately	1	or	smaller,	then	it	is	reasonable	to	conclude	that	the	values	
agree.	 	If	the	ratio	is	on	the	order	of	2,	or	more,	then	it	 is	unlikely	(less	than	about	
5%	probability)	that	the	values	are	the	same.	
	

Example	from	above	with	u	=	0.4:		 		 A	and	B	likely	agree	

Example	from	above	with	u	=	0.2:		 		 A	and	B	likely	do	not	agree 

	
Note	the	following	example	of	overlap:	

1.1
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These	two	measurements	agree,	despite	their	large	difference	in	error	bars	and	the	
fact	that	the	“red”	measurement	is	outside	of	the	“green”	error	bars.	There	is	no	
requirement	that	either	measurement	be	included	in	the	other	measurement’s	error	
bars	–	only	that	the	error	bars	of	the	two	measurements	overlap.	 	
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Making	Graphs	or	Plots	of	Data	

The	construction	of	graphs	(plots)	is	an	important	technique	in	experimental	
physics.	They	provide	a	compact	and	efficient	way	of	displaying	the	functional	
relationship	between	two	experimental	parameters	and	of	summarizing	
experimental	results.		

When	graphs	or	plots	are	required	in	laboratory	exercises,	you	will	be	instructed	
to	“plot	A	vs.	B”	(where	A	and	B	are	variables).	By	convention,	A	(the	dependent	
variable)	should	be	plotted	along	the	vertical	axis	(ordinate),	and	B	(the	independent	
variable)	should	be	plotted	along	the	horizontal	axis	(abscissa).	Graphs	that	are	
intended	to	provide	numerical	information	can	be	drawn	on	ruled	graph	paper	–	use	
a	sharp	pencil	(not	a	pen)	to	draw	graphs,	so	that	mistakes	can	be	corrected	easily.	
More	commonly,	it	is	recommended	to	use	a	computer	to	produce	graphs	(typically	
by	using	spreadsheet	software	such	as	Excel).	An	example	is	shown	below:	

	

	
	

Fig	4.	Plot	of	A	versus	B	
	

Note	the	following	important	rules	for	graphing:	
	

Title.	Every	graph	should	have	a	title	that	clearly	states	the	goal	or	outcome	of	
the	plot;	 it	 is	allowable	to	substitute	the	names	of	the	variables	that	appear	on	the	
plot.	If	the	graph	is	not	attached	to	another	identifying	report,	write	your	name	and	
the	date	on	the	plot	for	convenient	reference.	

Axis	labels.	Each	coordinate	axis	of	a	graph	should	be	labeled	with	the	word	or	
symbol	 for	 the	 variable	 plotted	 along	 that	 axis	 and	 the	 units	 (in	 parentheses)	 in	
which	the	variable	is	plotted.		
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Choice	of	Scale.	Scales	should	be	chosen	in	such	a	way	that	data	are	easy	to	plot	
and	easy	to	read.	On	coordinate	paper,	every	5th	and/or	10th	line	should	be	selected	
as	major	 division	 lines	 that	 represent	 a	 decimal	multiple	 of	 1,	 2,	 or	 5	 (e.g.,	 0,	 l,	 2,	
0.05,	20,	500,	etc.)	–	other	choices	(e.g.,	0.3)	make	 it	difJicult	 to	plot	and	also	read	
data.	Scales	should	be	made	no	Jiner	than	the	smallest	increment	on	the	measuring	
instrument	 from	which	 data	were	 obtained.	 For	 example,	 data	 from	 a	meter	 stick	
(which	has	l	mm	graduations)	should	be	plotted	on	a	scale	no	Jiner	than	l	division	=	l	
mm,	 because	 a	 scale	 Jiner	 than	 1	 div/mm	 would	 provide	 no	 additional	 plotting	
accuracy,	 since	 the	 data	 from	 the	meter	 stick	 are	 only	 accurate	 to	 about	 0.5	mm.	
Frequently	the	scale	must	be	considerably	coarser	than	this	limit,	in	order	to	Jit	the	
entire	plot	onto	a	single	sheet	of	graph	paper.	Commonly,	scales	are	chosen	to	give	
the	graph	a	roughly	square	boundary;	avoid	choices	of	scale	that	make	the	axes	very	
different	in	length.	Note	that	it	is	not	always	necessary	to	include	the	origin	(‘zero’)	
on	 a	 graph	 axis;	 in	many	 cases,	 only	 the	 portion	 of	 the	 scale	 that	 covers	 the	 data	
need	be	plotted.	

Data	Points.	Enter	data	points	on	a	graph	by	placing	a	suitable	symbol	(e.g.,	a	
solid	dot	●)	at	the	coordinates	of	the	point.	If	more	than	one	set	of	data	is	to	be	
shown	on	a	single	graph,	use	other	symbols	(e.g.,	■ or ◆ or ▲)	to	distinguish	the	
data	sets.	If	drawing	by	hand,	a	drafting	template	is	useful	for	this	purpose.	If	using	a	
spreadsheet,	these	symbols	are	commonly	chosen	automatically	but	can	be	changed.	

Curves.	As	a	rule,	you	should	not	draw	curves	through	the	data	point	–	because	
of	the	random	aspect	of	data	acquisition,	any	curve	will	typically	not	pass	through	all	
the	 points,	 although	 the	 agreement	 may	 be	 close.	 Instead,	 the	 plot	 should	 be	 a	
scatter	plot	with	unconnected	dots,	as	shown	in	Fig.	4.	A	best	Ait	curve	to	the	data	can	
then	 be	 automatically	 generated	 by	 a	 regression	 process	 (not	 shown	 in	 this	
example).	 The	 regression	 curve	 indicates	 the	 average	 trend	 of	 the	 data,	 and	 any	
predicted	 (interpolated	 or	 extrapolated)	 values	 can	 and	 should	 be	 read	 from	 the	
regression	curve	rather	than	reverting	to	the	original	data	points.		

Linear	(straight-line)	Graphs.	In	virtually	every	exercise	in	this	course,	you	will	
be	 asked	 to	 linearize	 your	 experimental	 results	 (plot	 the	 data	 in	 such	 a	way	 that	
there	is	a	linear,	or	straight-line	relationship	between	graphed	quantities).	In	these	
situations,	you	will	be	asked	to	Jit	a	straight	line	to	the	data	points	and	to	determine	
the	 best	 slope	 and	 best	 y-intercept	 from	 the	 graph.	 This	 is	 termed	 a	 linear	
regression.	In	the	example	shown	in	Fig.	4,	if	the	A	data	were	distance	an	object	falls	
in	 the	 air	 from	 rest	 and	 the	 B	 data	 were	 time,	 we	 might	 expect	 that	 the	 falling	
object’s	distance	varies	with	time	according	to	d	=	½gt2.	It	is	difJicult	to	tell	whether	
the	plot	in	Fig.	4	agrees	with	this	prediction;	however,	if	d	vs.	t2	is	plotted	instead,	a	
straight	 line	should	be	obtained	 if	 the	data	actually	matches	 the	model	of	a	 falling	
object.	If	so,	the	linearized	slope	would	be	½g	and	the	y-intercept	would	be	close	to	
zero.	
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Using	Excel	for	Data	Analysis	in	Physics	Labs	
	

Students	 have	 several	 software	 options	 for	 analyzing	 lab	 data	 and	 generating	
graphs	with	the	help	of	a	computer.		It	is	the	student’s	responsibility	to	ensure	that	
the	computational	results	are	correct	and	consistent	with	the	requirements	stated	in	
this	 document.	 Any	 suitable	 software	 can	 be	 used	 to	 perform	 these	 analyses	 and	
generate	tables	and	plots	for	lab	reports	and	assignments;	however,	since	Microsoft	
Excel	 is	 generally	 installed	 on	 all	 CCI	 laptops	 and	 in	 university	 computer	 labs,	
students	 are	 encouraged	 to	 use	 this	 spreadsheet	 program	 or	 an	 equivalent	 (e.g.,	
Apple	Numbers	or	Google	Sheets).	In	addition,	there	may	be	assignments	during	the	
semester	 that	speciJically	require	an	Excel	 (or	platform-equivalent)	spreadsheet	 to	
be	submitted.	
	

Getting	Started	
	

This	tutorial	will	lead	you	through	the	steps	to	create	a	graph	and	perform	linear	
regression	analysis	using	an	Excel	spreadsheet.	The	techniques	presented	here	can	
be	used	to	analyze	virtually	any	set	of	data	you	will	encounter	in	your	physics	studio.	
The	 experiment	 is	 a	 measurement	 of	 times	 and	 positions	 of	 a	 cart	 moving	 at	
constant	 speed.	 Several	 instructional	 videos	 have	 been	 created	 for	 the	 118/119	
courses	and	can	be	found	on	Sakai.	Check	these	videos	for	details	on	using	the	Excel	
software	so	that	you	can	duplicate	this	example.	

To	begin,	open	Excel.	A	blank	worksheet	should	appear.	 	Enter	the	sample	data	
from	the	experiment	(listed	in	the	table	below)	and	column	headings	shown	below	
into	cells	A1	through	D6.	Save	the	Jile	to	a	disk	or	to	your	personal	Jile	space	on	the	
campus	network.		
	

Time (sec) Posi,on (m) Time ± Posi,on ± 
0.64 1.15 0.05 0.20 
1.10 2.35 0.07 0.30 
1.95 3.35 0.05 0.20 
2.45 4.46 0.06 0.40 
2.85 5.65 0.10 0.40 

	
Table	3.	Position	versus	Time	Data	

	
Note	 that	 the	 uncertainties	 for	 the	 time	 and	 position	 (denoted	 ±)	 have	 been	

included.	 These	 are	 not	 necessary	 for	 a	 basic	 plot,	 but	 the	 studio	 lab	 reports	 and	
assignments	 require	 an	 uncertainty	 analysis,	 so	 you	 should	 get	 into	 the	 habit	 of	
including	them.	
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Creating	and	Editing	a	Plot	
	
You	will	be	creating	a	graph	of	these	data	whose	Jinished	form	looks	like	this:	
	

	
	

Figure	5.	Trendline	Analysis	of	Data	from	Table	3.	
	
Follow	these	steps	to	accomplish	this	(refer	to	the	videos	for	details):	
	

1. Use	your	mouse	to	select	all	the	cells	that	contain	the	data	that	you	want	to	
graph	(in	this	example,	columns	A	and	B).	To	graph	these	data,	select	Chart	
on	the	toolbar.		

2. From	the	plotting	options,	choose	any	scatter	plot	(e.g.,	XY	(Scatter)	or	
Marked	Scatter)	with	no	lines.	A	simple	plot	of	the	data	should	appear	in	the	
spreadsheet,	and	the	plot	should	be	both	moveable	and	resizable.	

3. Using	the	Chart	Layout/Format/Design	tool	(the	name	varies	with	version),	
experiment	with	setting	the	title,	axes,	axis	titles,	gridlines,	and	legends.	At	a	
minimum,	we	require	that	the	plot	be	titled	and	that	the	x-	and	y-axes	are	
descriptively	labeled	with	units.	We	strongly	suggest	that	all	gridlines	and	the	
legend	be	removed	for	clarity.	

	
Most	graph	features	can	be	modiJied	by	double-clicking	on	the	feature	you	want	to	
change.	You	can	also	right-click	on	a	feature	to	get	a	menu.	Try	changing	the	color	of	
the	plot	area,	the	numbers	on	the	axes,	and	the	appearance	of	the	data	points.		It	is	
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recommended	 that	 you	 always	 format	 the	 background	 area	 to	 white	 using	 the	
“Automatic”	option.	

Adding	Error	Bars	
	

The	methods	for	adding	error	bars	vary	signiJicantly	with	the	different	versions	
of	 Excel	 through	 the	 years	 and	 can	 also	 differ	 slightly	 for	 different	 platforms.	 In	
general,	 you	will	 format	your	data	series	 and	access	 the	error	bar	options.	 Fixed	
values	or	percentages	can	be	set,	 for	example,	but	 if	you	have	separate	columns	of	
uncertainty	values	 for	each	datum,	as	shown	above,	 then	select	custom	options	 to	
display	the	values	on	the	plot.	Select	the	positive	error	value	Jield	and	then	click	and	
drag	 in	 the	 corresponding	 Excel	 column	 of	 uncertainties.	 Repeat	 for	 the	 negative	
values.	Your	custom	error	bars	will	then	be	applied.	Repeat	for	the	other	axis.	Note	
that	if	you	create	separate	columns	for	the	positive	and	negative	error	bars,	they	can	
be	set	independently.	Also	note	that	error	bars	may	not	be	visible	if	they	are	smaller	
than	the	size	of	the	datum	point	on	the	plot.	
	
Consult	the	supplied	Sakai	videos	for	details	on	how	to	add	error	bars	to	your	plot.	

Adding	a	Trendline	
	

The	 primary	 reason	 for	 graphing	 data	 is	 to	 examine	 the	 mathematical	
relationship	 between	 the	 two	 variables	 plotted	 on	 the	 x-	 and	 y-axes.	 In	 statistical	
circles	this	is	referred	to	as	“regression.”	The	goal	is	to	Jind	a	graph	shape	that	best	
Jits	the	data	and	is	consistent	with	your	theoretical	prediction.	Since	we	are	trying	to	
linearize	the	data	to	get	a	straight	line	characterized	by	a	slope	and	an	intercept,	we	
are	looking	to	perform	a	“linear	regression.”	For	our	two	variables	x	and	y,	we	expect	
to	be	connected	by	a	 linear	relationship:	y	=	mx	+	b.	A	graph	of	y	vs	x	 should	be	a	
straight	line	which	has	a	slope	of	m	and	intersects	the	y-axis	at	the	value	y	=	b.		

Suppose	we	make	N	measurements	of	x	and	y	with	values	(x1,	y1),	(x2,	y2),	 ...,	(xN,	
yN).	 We	 assume	 that	 the	 measurements	 of	 x	 have	 negligible	 error	 and	 the	
measurements	of	y	have	standard	errors	σ1,	σ2,	 ...,	σN	.	Finding	the	best	straight-line	
amounts	to	finding	the	best	estimates	for	m	and	b	in	a	least-squares	sense.	The	best	
such	estimates	are	those	that	minimize	the	weighted	sum	of	squares	(chi-squared):		

	

𝜒! =# $
𝑦" − (𝑏 +𝑚𝑥")

𝜎"
.
!#

"$%
	

	
Note	that	the	quantity	b	+	mxi	is	the	expected	value	of	y	when	x	=	xi	,	thus	yi		–	(b	+	mxi)	
is	 just	 the	deviation	of	 the	measured	value	of	y	 from	the	expected	value.	The	 least	
squares	method	 finds	 values	 of	m	 and	 b	 that	minimize	 the	 sum	of	 the	 squares	 of	
these	deviations	weighted	by	their	respective	uncertainty.		
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In	this	course,	you	will	use	data	analysis	software	like	Excel	to	automatically	
calculate	the	best	values	of	m	and	b	and	their	respective	errors	σa	and	σb	.	If	your	
data	points	have	widely	varying	uncertainties,	those	with	large	uncertainties	should	
be	given	less	weight	and	a	weighted	fit	should	be	used.	In	this	course,	we	will	
assume	(possibly	incorrectly)	that	all	data	points	are	to	be	given	equal	weight.	

Always	select	the	Options	"display	equation	on	chart"	and	“display	R-squared	
value	on	chart.”	A	very	good	linear	Jit	is	indicated	by	an	R2	value	close	to	1,	but	
values	as	low	as	0.7	are	not	unexpected.	
	
Consult	the	supplied	Sakai	videos	for	details	on	how	to	add	a	trendline	to	your	plot.	

	
Caution:	When	 searching	 for	 a	mathematical	model	 that	 explains	 your	 data,	 it	 is	
very	easy	to	use	the	trendline	tool	to	produce	nonsense.	This	tool	should	be	used	to	
Jind	 the	 simplest	 mathematical	 model	 that	 explains	 the	 relationship	 between	 the	
two	 variables	 you	 are	 graphing.	 Look	 at	 the	 equation	 and	 shape	 of	 the	 trendline	
critically:		
	

• Does	it	make	sense	in	terms	of	the	physical	principle	you	are	investigating?		
• Is	the	result	the	best	possible	explanation	for	the	relationship	between	the	

two	variables?		
	

Use	 the	 simplest	 equation	 that	 passes	 through	most	 of	 the	 error	 bars	 on	 your	
graph.	 You	 may	 need	 to	 try	 a	 couple	 of	 trendlines	 before	 you	 get	 the	 most	
appropriate	one.		

For	 linear	 plotting,	 the	 result	 of	 the	 regression	 analysis	 will	 be	 a	 value	 of	 the	
slope	and	y-intercept	of	the	trendline,	but	you	have	not	completed	the	analysis	until	
you	have	found	the	uncertainties	in	both	these	quantities.	

Determining	the	Uncertainty	in	Slope	and	Y-intercept	
	

Given	 the	 best	 Jit	 line	 y	 =	 mx	 +	 b,	 there	 are	 two	 methods	 for	 Jinding	 the	
uncertainties	 in	 the	 slope	m	 and	 y-intercept	 b.	 The	 methods	 are	 mathematically	
equivalent;	therefore,	either	method	of	computation	is	allowed.	
	
Method	1:	First	principles	calculation	of	least	squares	uncertainty.		
	

These	uncertainties	are	calculated	in	a	two-step	process.	For	n	data	points,	
the	standard	error	(uncertainty)	in	the	slope	m	can	be	determined	from	the	
R2	value	by	using	the	following	formula:	

	

	 	 (6)	

	
The	uncertainty	in	the	y-intercept	b	is	then	given	by:		

2
1)/1( 2

-
-

=
n
Rmms
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	 	 (7)	

	
These	values	can	be	computed	directly	in	Excel	or	by	using	a	calculator.	For	
our	example	sample	set	of	data,	sm	=0.1684	m/s,	and	sb	=	0.3330	m.	Note	
that	a	value	of	R2	of	exactly	1	results	in	slope	and	intercept	uncertainties	of	
exactly	zero,	which	is	highly	unlikely	to	be	correct.	Carefully	exam	the	Excel	R2	
value	–	although	it	may	display	as	exactly	1,	it	likely	is	not	exactly	1.	If	your	
value	is	indeed	exactly	1,	it	indicates	an	error	in	how	you	have	plotted	
your	data.	
	
The	result	for	our	Table	3	data	are	shown	in	Fig.	5.	After	a	regression	line	has	
been	found,	the	trendline	equation	must	be	interpreted	in	terms	of	the	
context	of	the	situation	being	analyzed.		This	data	set	came	from	a	cart	
moving	along	a	track.	We	can	see	that	the	cart	was	moving	at	essentially	a	
constant	speed	since	the	data	points	in	Fig.	5	tend	to	lie	in	a	straight	line	and	
do	not	curve	up	or	down.	The	speed	of	the	cart	is	simply	the	slope	of	the	
regression	line,	and	its	uncertainty	is	found	from	the	equation	above:	v	=	
1.8885	±	0.1684	m/s.	We	apply	our	sig	Jig	rules	for	a	Ginal	answer	of	v	=	1.9	±	
0.2	m/s.		(Note:		If	we	had	plotted	a	graph	of	time	versus	distance,	the	speed	
would	be	the	inverse	of	the	slope:		v	=	1/m).	The	y-intercept	gives	us	the	
initial	position	of	the	cart:		x0	=	–0.0035	±	0.3330	m,	which	is	essentially	zero.	

	
Method	2:	LINEST	calculation	of	least	squares	uncertainty.		
	

The	uncertainty	in	the	slope	and	y-intercept	can	also	be	found	by	using	the	
LINEST	function	in	Excel.	The	results	of	the	LINEST	analysis	are	virtually	
identical	to	the	linear	trendline	analysis	described	above;	however,	LINEST	
provides	a	single-step	calculation	of	both	the	slope	and	intercept	
uncertainties,	instead	of	the	multi-step	procedure	described	above.		

	
	

• Start	with	a	table	for	time	and	
position	(Table	3,	shown	right).		

• Follow	our	video	instructions	for	
creating	a	LINEST	table.	

• In	general,	the	4	arguments	that	go	
into	the	LINEST	routine	are										
[x-values,	y-values,	TRUE,	TRUE]	

• The	result	is	shown	to	the	right.	
Note:	the	LINEST	routine	only	
shows	the	numbers	highlighted	in	
blue.	

n
x

mb
å=

2

ss
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Appendix	I.	Extension	of	Quadrature	to	Arbitrary	Power	Laws	
	
The	quadrature	method	can	be	generalized	to	all	power	laws	in	the	following	way:	
	

f	=	xnym	
	

	

	
Proof:	
	
Consider	a	quantity	f	to	be	calculated	by	multiplying	two	measured	quantities	x	and	
y	whose	uncertainties	are	σx	and	σy,	respectively.	From	the	chain	rule	of	calculus,	the	
change	in	f	due	to	changes	in	x	and	y	is:	
	

	

Squaring	and	averaging	yields:	
	

	

	
For	uncorrelated	measurements,	 	is	zero.	Consider	the	average	square	change	

in	quantities	to	be	the	uncertainty	in	each	of	x,	y,	and	f;	that	is,	 ,	etc.	Then:	
	

	

	
To	 generalize	 it	 to	 arbitrary	 powers	 of	 x	 and	 y,	 consider	 the	 function	 f	 =	 xnym;	
substituting	 this	 into	 the	 last	 equation	 and	 dividing	 by	 f	 yields	 the	 relative	
uncertainty:	
	

	

	

The	partial	derivatives	are	 	and	 .	Substituting	these	yields:	
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This	expression	looks	complicated,	but	it	simpliJies	to	the	following	rather	simple	
result:	

	

	
The	result	is	that	the	relative	(fractional)	uncertainty	in	f	is	the	same	quadrature	
(RSS)	sum	of	individual	uncertainties	in	x	and	y,	but	with	weights	that	are	
proportional	to	the	power	laws	in	the	original	expression.	Examples	include:	
	

f	=	xy	 	

f	=	x/y	 	

f	=	xy2	 	

	
	
Note	again	that	the	results	for	multiplication	and	division	are	the	same	(division	is	
just	 a	 power	 law	with	 a	 negative	 exponent).	 Also	 note	 that	 variables	 that	 appear	
with	 a	 higher	 power	 are	 weighted	 more	 heavily	 in	 the	 propagation.	 For	 some	
functions,	 especially	 non-linear	 trig	 functions,	 you	 may	 have	 to	 evaluate	 the	
derivatives	 to	 Jind	 how	 the	 uncertainty	 propagates;	 however,	 for	 many	 functions,	
performing	 the	 derivatives	 each	 time	 is	 not	 required	 –	merely	 apply	 the	 equation	
highlighted	in	yellow	above.	

The	uncertainty	estimate	from	the	ULB	method	is	generally	larger	than	the	
standard	uncertainty	estimate	found	from	the	quadrature	method,	but	both	
methods	will	give	a	reasonable	estimate	of	the	uncertainty	in	a	calculated	value.	
	
Note:	Once	you	understand	the	quadrature	method,	it	is	not	required	to	perform	the	
partial	 derivative	 every	 time	 you	 are	 presented	with	 a	 propagation	 of	 uncertainty	
problem	in	any	of	the	above	forms!	Instead,	simply	apply	the	correct	formula	for	the	
relative	uncertainties.	
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Appendix	II.	Practical	Examples	for	Measuring	and	Citing	Uncertainty	
	
I.	Instrument	Precision	and	Accuracy	
	
Instrument	precision	is	the	smallest	reading	an	instrument	can	provide.	For	some	
instruments,	this	precision	is	unambiguous;	for	example,	a	digital	balance	whose	
readout	is	displayed	as	_	_	.	_	g	has	an	instrument	precision	of	0.1	g.	In	contrast,	a	
meter	stick’s	instrument	precision	is	open	to	interpretation.	If	the	Jinest	mark	on	the	
meter	stick	is	1	mm,	it	could	be	claimed	that	the	instrument	precision	is	0.001	m,	or	
1	mm;	however,	a	different	observer	might	claim	that	it	is	possible	to	interpolate	
between	the	Jinest	marks,	and	therefore	might	claim	that	the	instrument	precision	is	
0.0005	m,	or	0.5	mm.	In	all	cases,	the	choice	of	instrument	precision	and	the	
reasoning	should	be	included	in	any	report	that	incorporates	that	instrument’s	use.	
	
In	contrast	to	the	instrument	precision,	the	instrument	accuracy	refers	to	the	ability	
to	correctly	measure	the	value	of	a	known	standard.	If	a	digital	balance	with	a	
measurement	precision	of	0.1	g	is	used	to	measure	a	weight	independently	known	to	
have	a	mass	of	exactly	500.0	g,	and	the	result	is	495.3	g,	the	accuracy	is	no	better	
than	about	5	g,	even	though	the	precision	is	0.1	g.	Several	strategies	for	addressing	
this	discrepancy	are	listed	below:	
	
a)	Cite	the	value	as	495.3	±	4.7	g.	Unacceptable:	citing	the	uncertainty	to	2	sig	Aigs	is	
not	warranted	for	less	than	50	measurements	(Table	2).	
	
b)	Cite	the	value	as	495.3	±	5	g.	Unacceptable:	citing	the	measurement	to	a	higher	
precision	than	the	uncertainty	is	not	warranted	without	signiAicant	justiAication.	
	
c)	Cite	the	value	as	495	±	5	g.	Acceptable	but	not	optimal:	the	measurement	is	clearly	
incorrect	because	it	is	known	that	the	weight	is	exactly	500	g.	If	only	a	single	
measurement	is	possible,	citing	as	shown	is	allowed,	but	should	be	accompanied	by	a	
discussion	about	the	known	discrepancy	and	the	introduction	of	a	systematic	error.	
		
d)	Cite	the	value	as	495.3	±	0.1	g.	Allowed	but	only	if	a	known	calibration	standard	or	
other	information	about	the	accuracy	is	unavailable:	the	calibration	status	of	the	
instrument	should	be	consulted.	If	this	is	not	possible,	it	is	not	unreasonable	to	assume	
that	the	instrument	has	an	implied	accuracy	that	matches	its	precision,	as	shown	in	
this	example.	
	
Item	d)	is	the	most	common	scenario	in	Physics	118	activities.		Any	such	assumption	
about	substituting	precision	for	accuracy	should	be	included	in	a	discussion,	with	an	
acknowledgment	that	a	systematic	error	may	have	been	introduced.	The	
recommended	procedure	to	address	this	issue	is	to	acquire	multiple	“identical”	
samples	of	the	“known”	weight	and	compute	an	average	value	and	standard	
deviation.		This	would	resolve	the	question	of	whether	citing	the	precision	as	an	
uncertainty	is	warranted;	however,	it	would	not	resolve	the	accuracy	question.	The	
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best	approach	to	the	accuracy	question	is	a	calculation	of	the	standard	error,	but	it	is	
extremely	important	to	remove	any	systematic	uncertainties	–	any	measurements	
performed	without	known	calibration	standards	available	are	susceptible	to	
systematic	effects	and	should	be	cited	with	the	combined	(Type	A	and	Type	B)	
standard	uncertainty.	
	
II.	Stacking	Example	1	
	
Assume	you	are	asked	to	measure	the	mass	of	a	typical	penny	(according	to	the	US	
Mint,	currently	made	pennies	have	a	nominal	mass	of	2.5	g)	with	a	scale	whose	
accuracy	is	known	to	be	±0.2	g	but	reads	to	a	precision	of	0.1	g.	One	can	immediately	
discard	the	choice	of	0.1	g	as	the	accuracy.	Measuring	one	penny	might	yield	a	
measurement	of	2.4	±	0.2	g,	and	this	would	be	the	only	measurement	possible	for	
that	one	penny.	Likewise,	another	penny	might	yield	a	measurement	of	2.5	±	0.2	g.	
	
Is	there	a	way	to	get	a	more	precise	measurement?	In	this	case,	yes,	because	you	are	
asked	to	Jind	the	mass	of	a	typical	penny.	By	stacking	pennies	and	measuring	more	
than	one	of	them	at	the	same	time,	dividing	by	the	number	of	pennies	measured	can	
provide	a	more	precise	answer.	For	example,	assume	that	you	measure	the	mass	
value	of	Jive	pennies	separately,	with	these	results	(all	with	an	accuracy	of	±0.2	g):	
2.4,	2.4,	2.5,	2.4,	2.6.	The	relative	uncertainty	of	each	measurement	is	about	8%.	
Further	assume	that	when	you	measure	all	Jive	at	the	same	time,	the	value	is	12.3	±	
0.2	g,	yielding	a	relative	uncertainty	of	about	2%	for	the	stack.	The	mean	value	for	a	
typical	penny	is	therefore	(retaining	guard	digits)	2.460	g.	But	what	do	we	assign	as	
the	uncertainty?	One	might	argue	that	the	uncertainty	is	still	0.2	g;	however,	we	can	
plausibly	rewrite	the	sum	as:		
	
sum	=	(2.4	±	0.04)	+	(2.4	±	0.04)	+	(2.5	±	0.04)	+	(2.4	±	0.04)	+	(2.6	±	0.04)	=	12.3	±	0.2	g	
	
This	is	demonstrably	the	same	as	the	stacked	value	of	12.3	±	0.2	g,	and	suggests	that,	
based	on	the	upper-lower	bound	method,	the	uncertainty	can	also	be	divided	by	Jive.	
Therefore,	as	a	general	rule,	we	can	reasonably	divide	both	the	stacked	value	and	its	
uncertainty	by	N,	and	assert	the	value	for	a	typical	penny	as	2.46	±	0.04	g.	Note	that	
as	per	Table	2,	the	uncertainty	is	cited	to	only	one	sig	Jig,	because	only	Jive	
measurements	were	made.	
	
Assume	instead	that	the	accuracy	of	the	scale	is	unknown;	a	working	proposition	is	
that	the	scale’s	mechanism	will	correctly	report	that	an	object	of	0.1	g	is	somewhere	
between	0.05	g	and	0.15	g.	The	reading	of	12.3	g	for	all	5	pennies	together	could	
therefore	have	values	falling	between	12.25	and	12.35	g.	Dividing	this	by	5	yields	a	
nominal	value	of	2.460	g	with	a	high	and	low	of	2.470	g	and	2.450	g,	respectively.	
The	value	of	2.460	±	0.010	g	could	then	be	cited	as	2.46	±	0.01	g	to	one	sig	Jig;	
however,	although	the	results	seem	“better,”	there	is	no	conJidence	that	this	value	is	
correct.	In	measurement	cases	were	the	accuracy	of	the	measuring	device	is	not	
known,	the	result	should	explicitly	cite	this	discrepancy.	
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III.	Stacking	Example	2	
	
As	another	example,	assume	that	a	student	is	asked	to	measure	the	period	of	a	
pendulum	and	discuss	any	systematic	effects	that	could	cause	the	measurement	to	
be	inaccurate.	The	student	responds:	“I	held	the	pendulum	bob	still	at	an	angle	of	
45°	and	started	a	stopwatch	at	the	moment	I	let	go.	I	waited	for	the	pendulum	to	
swing	back	and	then	stopped	the	stopwatch	at	the	moment	the	bob	reached	the	
starting	position.	The	reading	on	the	stopwatch	is	the	best	measurement	of	the	
period	of	the	pendulum	of	this	length;	however,	friction	is	a	systematic	effect	that	
could	cause	the	measurement	to	be	inaccurate.”	Critique	this	response.	
	

This	measurement	can	be	improved	greatly	by	stacking.	In	this	example,	
“stacking”	means	to	allow	the	pendulum	to	swing	for	multiple	periods	and	
divide	by	the	number	of	periods.	Despite	this	improvement,	multiple	issues	
remain	with	such	a	measurement.	In	particular,	the	use	of	the	term	“friction”	is	
too	vague	to	be	instructive.	In	the	introductory	physics	course,	“friction”	is	
reserved	to	mean	either	a)	two	surfaces	in	contact	and	sliding	against	each	
other	(kinematic	friction)	or	b)	the	resistance	between	two	surfaces	in	contact	
to	begin	sliding	(static	friction).	Neither	of	these	apply	to	the	pendulum	bob.	
Instead,	the	bob	may	be	slowed	down	by	drag,	which	is	a	more	appropriate	
term	than	“friction”	when	Aluids	(e.g.,	air)	are	present	–	the	physics	of	drag	and	
the	physics	of	kinematic	sliding	friction	are	quite	different;	therefore,	making	
the	distinction	is	a	superior	answer	that	will	be	rewarded	with	credit.	In	the	
case	of	drag,	stacking	may	result	in	a	worse	answer	for	the	period,	because	as	
more	swings	are	counted,	drag	effects	multiply.	Finally,	we	note	that	the	simple	
pendulum	is	a	non-linear	device	–	the	harmonic	oscillator	period	for	a	simple	
pendulum	applies	only	for	small	angles	(good	to	about	1%	at	angles	of	less	than	
10°).	For	angles	such	as	45°,	there	may	be	poor	agreement	between	the	
measured	and	theoretical	periods	unless	non-linearity	is	considered.		
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IV.	Approach	to	Uncertainty	When	Accuracy	is	Cited	as	a	Percentage.	
	
Instrument	accuracy	may	be	described	in	terms	of	a	percentage,	such	as	“±	0.1%.”	
For	high	quality	instruments,	this	usually	means	0.1%	of	the	full-scale	(FS)	reading,	
across	the	entire	measurement	range	of	the	instrument.	For	example,	if	a	digital	
balance	can	measure	a	maximum	value	of	199.9	g,	the	accuracy	would	be	0.1%	of	FS	
(200	g),	or	±	2	g	(worse	than	the	instrument	precision	is	0.1	g).	In	this	case,	follow	
the	guidelines	in	Example	I.		
	
However,	the	origin	of	the	percentage	uncertainty	may	be	ambiguous,	and	could	
imply	a	percentage	of	the	current	reading.	If	the	interpretation	is	ambiguous,	it	can	
be	evaluated	by	comparing	to	the	precision	of	the	instrument.	As	an	example,	
assume	it	is	claimed	that	the	accuracy	of	the	balance	is	0.1%	for	any	mass,	and	that	
the	measurement	of	one	object	reads	53.4	g.	The	percent	accuracy	of	0.1%	implies	
and	accuracy	of	±0.05	g,	which	is	better	than	the	instrument	precision	of	0.1	g!	This	
inconsistency	suggests	that	a	“stack	of	one”	item	is	inappropriate.	Stacking	should	
be	used,	but	it	cannot	be	applied	arbitrarily;	a	stack	of	two	would	not	
unambiguously	resolve	the	question,	but	a	stack	of	three	would.	
	
The	general	approach	in	this	case	is	to	stack	enough	objects	so	that	the	percentage	
accuracy	exceeds	the	precision	of	the	measurement.	The	approach	in	Example	I	can	
then	be	used;	however,	under	all	circumstances,	any	assertion	of	an	uncertainty	
beyond	1	sig	Jig	is	only	justiJied	for	N=50	or	above	(Table	2).		
	
V.	Use	of	Containers	
	
Assume	you	are	given	a	quantity	of	water	and	you	are	asked	to	measure	its	weight	
using	a	scale.	You	need	a	container,	but	the	container	itself	has	a	weight.	The	
procedure	is	to	weigh	the	container	by	itself,	and	then	the	container	and	the	water	
together,	and	subtract	to	get	the	weight	of	the	water;	however,	in	this	case,	the	
uncertainties	of	the	two	measurements	must	be	added	despite	subtracting	the	two	
values.	This	should	be	self-evident	from	an	upper-lower	bound	perspective;	the	
quadrature	analysis	is	a	more	formal	statement	of	the	same	result	(see	Quadrature	
section).	
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VI.	Explaining	Discrepancies	
	
A	simple	pendulum	is	known	to	have	a	period	of	oscillation	T =	1.55	s.	Student	A	uses	
a	digital	stopwatch	to	measure	the	total	time	for	5	oscillations	and	calculates	an	
average	period	T =	1.25	s.	Student	B	uses	an	analog	wristwatch	and	the	same	
procedure	to	calculate	an	average	period	for	the	5	oscillations	and	Jinds	T =	1.6	s.		
	

• Which	student	made	the	more	accurate	measurement?	The	measurement	
made	by	Student	B	is	closer	to	the	known	value	and	is	therefore	more	accurate. 

• Which	measurement	is	more	precise?	The	measurement	made	by	Student	A	is	
reported	with	more	digits	and	is	therefore	more	precise.	

• What	is	the	most	likely	source	of	the	discrepancy	between	the	results?	
Although	the	difference	in	period	measurements	is	only	0.3	s,	the	original	
timing	measurements	may	have	differed	by	5	times	this	amount	since	we	are	
told	that	the	average	period	was	calculated	from	the	total	time	for	5	
oscillations.	So	even	though	reaction	time	(typically	~0.2	s)	is	a	likely	source	of	
systematic	error,	this	would	not	explain	the	discrepancy	of	approximately	1.5	s,	
or	about	one	period.	Therefore,	the	most	likely	source	of	the	discrepancy	is	that	
Student	A	mistakenly	measured	only	4	oscillations	instead	of	5.	This	example	
shows	that	a	measurement	with	greater	precision	is	not	always	more	accurate.		

	
VII.	Propagating	Uncertainty	and	Reporting	Values	
	
A	student	uses	a	protractor	to	measure	an	angle	of	θ	=	85° ±	1°.	What	should	she	
report	for	sinθ?		
	

sin(θ)	=	0.996	±	0.002.	The	uncertainty	can	be	determined	from	either	the	
upper/lower	bound	method	or	propagation	of	uncertainty	using	partial	
derivatives	(quadrature).	Both	methods	yield	the	same	result	when	rounded	to	
one	signiAicant	Aigure.	Note	that	it	would	be	inappropriate	to	round	this	further	
to	1.00	±	0.00,	because	it	implies	an	uncertainty	of	zero.	
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VIII.	Outliers	
	
A	group	of	students	are	told	to	use	a	meter	stick	to	Jind	the	length	of	a	hallway.	They	
take	6	independent	measurements	as	follows:	3.314	m,	3.225	m,	3.332	m,	3.875	m,	
3.374	m,	3.285	m.	How	should	they	report	their	Jindings,	and	why?		
 

No	data	should	be	excluded	when	presenting	the	raw	numbers.	Therefore,	all	
values	should	appear	in	any	data	tables,	and	all	values	should	appear	on	plots.	
An	example	is	shown	below	for	these	data:	

	

	
	

The	measurement	of	3.875	m	is	an	outlier	(10	standard	deviations	from	the	
other	values)	and	is	most	likely	a	mismeasurement	(see	2nd	bullet	point	below).	
In	this	case,	the	best	estimate	would	be	the	average	and	standard	error	for	the	
5	“good”	values	(3.31	±	0.02	m).	Note	two	aspects	of	this	approach:	

• If	a	systematic	error	is	suspected,	then	using	the	standard	error	may	
also	be	suspect.	The	standard	deviation	is	0.06	m;	therefore,	a	more	
conservative	answer	would	be	3.3	±	0.1	m.	

• Be	careful	before	throwing	out	data	–	Nobel	Prizes	have	been	won	
because	of	outliers	(although	probably	not	in	118)!	Also	think	about	the	
experiment	carefully:	in	this	example,	there	is	likely	to	be	a	misused	
meter	stick,	but	in	the	case	of	gold	prospecting,	only	the	outliers	are	
kept,	and	everything	ELSE	is	thrown	out!	

	
	
	
IX.	Limiting	Factors		
 
A	Vernier	caliper	(an	instrument	that	can	routinely	measure	lengths	to	0.001	inch,	or	
less	than	0.05	mm),	is	used	to	measure	the	radius	of	a	tennis	ball.	The	value	is	
presented	as	R	=	3.2	±	0.1	cm	(half	of	D	=	6.4	±	0.2	cm).	Why	is	this	result	not	more	
precise?		
	

The	uncertainty	of	this	measurement	is	determined	not	by	the	resolution	of	the	
caliper,	but	by	the	imprecise	deAinition	of	the	ball's	diameter	(it’s	fuzzy!).		
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X.	Uncertainty	Propagation	I	
	
Equipment	is	used	to	measure	the	acceleration	of	a	glider	on	an	inclined	air	track	as	
accurately	as	possible.	The	distance	between	two	photogates	is	measured	very	
accurately	as	d	=	1.500	±	0.005	m.	The	experiment	is	run	5	times	with	the	glider	
starting	from	rest	at	the	Jirst	photogate,	and	the	photogate	times	are	recorded	as	t	
(in	sec)	=	1.12,	1.06,	1.19,	1.15,	1.08.	What	is	the	best	estimate	of	the	acceleration	of	
the	glider?	
 

The	average	time	is	1.12	s	with	a	standard	error	of	0.02	s.	The	relationship	
between	the	distance	and	acceleration	is	d	=	½at2;	the	best	estimate	for	the	
acceleration	is	therefore	a	=	2.392	m/s2	(retaining	guard	digits).	The	
quadrature	result	for	the	uncertainty	in	the	acceleration	is		

	

	

	
The	relative	uncertainty	in	the	time	is	more	than	5x	the	relative	uncertainty	in	
the	position.	In	addition,	the	quadratic	dependence	on	time	creates	an	
additional	factor	of	4,	so	the	uncertainty	in	time	dominates,	and	the	
uncertainty	in	the	distance	can	be	neglected.	Therefore:	

	

	

 
The	result	is	an	acceleration	of	a	=	2.39	±	0.09	m/s2,	or	2.4	±	0.1	m/s2.	

	
From	the	standpoint	of	upper-lower	bound	(not	the	best	estimate),	we	have		

	

	

	
With	the	result	of	a	=	2.39	+0.10	–0.09	m/s2.	In	this	case,	we	see	that	the	ULB	
and	quadrature	calculations	are	virtually	identical,	with	the	ULB	result	being	
slightly	larger,	as	expected.	
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XI.	Uncertainty	Propagation	II	
	
A	student	performs	a	simple	experiment	to	Jind	the	average	acceleration	of	a	falling	
object.	He	drops	a	baseball	from	a	building	and	uses	a	string	and	tape	measure	to	
measure	the	height	from	which	the	ball	was	dropped.	He	uses	a	stopwatch	to	Jind	an	
average	time	of	fall	for	3	trials	from	the	same	height	and	reports	the	following	data:	
h	=	6.75	±	0.33	m,	t	=	1.14	±	0.04	s.	Determine	the	average	acceleration,	and	
comment	on	the	accuracy	of	the	result	(do	you	think	any	errors	were	made?).	What	
suggestions	would	you	make	to	improve	the	result?	
	

Calculating	the	acceleration	as	for	the	previous	example	yields	a	=	2h/t2	=	
10.387	m/s2.	In	this	case,	neither	relative	uncertainty	in	time	nor	distance	
dominates,	so	both	should	be	included	in	a	quadrature	calculation:	

	

	

	
The	Ainal	answer	would	be	written	as	10.4	±	0.9	m/s2.	Note	that	this	answer	is	
higher	than	the	value	for	g	in	a	vacuum.	Although	the	uncertainty	range	
includes	the	value	9.8	m/s2,	we	would	expect	the	value	for	acceleration	to	be	at	
least	somewhat	or	well	below	g	because	of	the	effect	of	drag.	Therefore,	this	
result	should	be	viewed	with	some	suspicion.	Suggestions	include	doing	more	
trials	and	improving	the	accuracy	of	each	measurement.	Accuracy	in	the	time	is	
where	the	most	gains	can	be	made	because	the	relative	uncertainty	of	the	time	
is	weighted	twice	that	of	the	relative	uncertainty	of	the	distance.	

	
From	the	standpoint	of	upper-lower	bound	(not	the	best	estimate),	we	have		

	

	

	
With	the	result	of	a	=	10.39	+1.31	–1.17	m/s2,	or	10.4	±	1.3	m/s2.	In	this	case,	we	
see	that	the	ULB	result	displays	a	noticeably	larger	uncertainty	than	the	
quadrature	calculation.	
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XII.	Uncertainty	Propagation	3	
	
A	student	uses	a	meter	to	measure	the	capacitance	of	two	parallel	plates	that	are	22	
cm	in	diameter	and	separated	by	a	piece	of	cardboard	(κ	=	3)	that	is	5	mm	thick.		
What	capacitance	would	you	expect	this	student	to	measure?	If	the	relative	
uncertainties	in	the	diameter	and	plate	separation	and	dielectric	constant	are	2%,	
5%,	and	10%,	respectively,	what	uncertainty	in	the	measurement	would	you	cite?	
What	suggestions	would	you	give	to	reduce	the	effect	of	stray	capacitance?	
	

The	nominal	value	would	be:						

	

	

 

 
Note	that	since	the	area	A	depends	on	the	diameter	squared,	the	uncertainty	in	
the	diameter	has	a	higher	weight	than	the	other	variables	and	cannot	be	
neglected	in	the	uncertainty	calculation,	even	though	it	is	signiAicantly	smaller.	
The	answer	should	be	cited	as	202	±	24	pF.	

 
From	the	standpoint	of	upper-lower	bound	(not	the	best	estimate),	we	have		

	

	

	
With	the	result	of	C	=	202	+23	–20	pF,	or	202	±	23	pF.	In	this	case,	we	see	that	
the	ULB	result	displays	a	somewhat	smaller	uncertainty	than	the	quadrature	
calculation.	
	
To	reduce	stray	capacitance,	minimize	the	length	of	wire	leads	used	in	the	
measurement	process.	If	possible,	zero	the	meter	with	the	leads	in	place	before	
making	the	measurement.	
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XIII.	Uncertainty	from	Linear	Regression	
	
In	an	investigation	to	empirically	determine	the	value	of	p,	a	student	measures	the	
circumference	and	diameter	of	5	circles	of	varying	size	and	uses	Excel	to	make	a	
linear	plot	of	circumference	versus	diameter	(both	in	units	of	meters).	A	linear	
regression	Jit	yields	the	result	of	y	=	3.1527x	–	0.0502,	with	R2	=	0.9967	for	the	5	
data	points	plotted.	How	should	this	student	report	the	Jinal	result?	Does	the	
empirical	ratio	of	C/D	agree	with	the	accepted	value	of	p?	
	

The	theoretical	result	is	C	=	pD	+	0.	By	inspection,	the	experimental	value	of	p	is	
given	by	the	slope	of	the	regression,	or	3.1527.	The	uncertainty	in	this	value	is:	

	

	
	

The	Ainal	experimental	value	for	π	is	then	3.15	±	0.10,	or	3.2	±	0.1.	Note	that	the	
experimental	intercept	is	not	zero,	but	not	enough	information	has	been	given	
to	calculate	the	intercept’s	uncertainty.	The	value	for	p	can	therefore	only	be	
trusted	to	the	extent	that	–0.0502	(the	intercept)	is	experimentally	equivalent	
to	zero.	Therefore,	the	uncertainty	in	the	intercept	should	be	larger	than	
0.0502;	if	not,	there	is	more	discussion	to	be	written!  
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XIV. Analyzing the Effect of Multiple Variables  
 
A	student	uses	a	photogate	to	determine	the	speed	of	a	cart	on	a	track.	A	“Jlag”	on	
top	of	the	cart	has	length	d	and	runs	in	the	direction	of	travel	(parallel	to	the	length	
of	the	cart).	The	Jlag	is	positioned	to	block	the	photogate	beam	as	the	cart	crosses.	
When	the	beam	is	unblocked	after	the	Jlag	move	on,	the	amount	of	time	Δt	that	has	
elapsed	is	recorded.	Since	d	and	Δt	are	assumed	to	be	accurate,	an	accurate	
calculation	of	the	cart’s	speed	can	be	made.		
	
Normally	the	Jlag	is	oriented	exactly	in	line	with	the	cart	and	parallel	to	the	track	as	
described,	but	instead	suppose	that	the	Jlag	is	tilted	(as	viewed	from	above).	As	
viewed	by	the	photogate,	the	Jlag	will	appear	to	be	shorter	than	it	really	is.	Suppose	
that	an	experimenter	does	not	realize	that	the	Jlag	on	the	cart	is	angled	away	from	
the	path	of	motion.	Suppose	further	that	the	photogate	timer	is	inaccurate.	If	the	Jlag	
is	actually	tilted	at	an	angle	of	30°	and	the	timer	actually	measures	10%	less	time	
than	it	should,	what	relative	error	in	speed	will	result	from	these	two	systematic	
effects?	Ignore	friction,	rolling	resistance,	and	drag	in	this	problem.	
	

Calculating	the	relative	error	in	the	Alag	length	is	not	the	correct	solution.	As	far	as	
the	student	knows,	the	Alag	is	correctly	oriented.	A	Alag	error	results	in	an	incorrect	
time	measurement,	and	the	incorrectly	working	timer	further	compounds	this	
error.	The	correct	speed,	using	the	variables	that	are	measured,	is	simply	v	=	d/Δt,	
where	d	is	the	Alag	length	and	Δt	is	the	time	that	the	photogate	is	blocked.	The	
incorrect	speed	arises	entirely	from	erroneous	time	measurements;	the	measured	
time	is	shortened	by	a	factor	of	cos30°	and	then	is	shortened	again	by	a	separate	
factor	(f)	by	which	the	timer	is	defective:		
	

incorrect	speed	=	 &
'∗)*+,-°∆0

	
	

The	relative	error	is	given	by	equation	2:		 relative	error	=	123+452&	–	2892)02&
2892)02&

		
	

An	acceptable	solution	on	a	practicum,	for	cos(30°)	=	0.866	and	f	=	0.9,	is:	
	

Relative	speed	error	=	
!

"∗$%&'(°∆+	–	
!
∆+

!
∆+

	=	 %
'∗)*+,-°

	– 	1	=	+28.3%	(too	fast)	
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Discussion	
	 	

The	time	measured	by	a	photogate	for	a	Alag	of	length	d	moving	at	speed	v	is	t	=	
(dcosθ)/v,	where	θ	is	the	Alag	angle	measured	from	the	line	of	travel:	for	any	Alag	
length	d,	the	time	measured	by	the	photogate	approaches	zero	as	θ	approaches	
90°.	If	the	photogate	itself	measures	incorrectly	by	a	factor	of	f,	then	the	time	
measured	is	t	=	f(dcosθ)/v.	If	the	photogate	is	measuring	10%	less	than	it	should,	
then	f	=	0.9.	We	now	calculate	the	relative	time	error:	
	

Relative	time	error	=	0,-.&	–	0-/0-$+-!
0-/0-$+-!

=
"!$%&'(°

1 	–	!1
!
1

	=	0.9𝑐𝑜𝑠30°	– 	1	=	–.22058	

	
The	photogate	measures	a	time	that	is	22.1%	too	low	in	total.	We	now	ask,	for	the	
speed	in	question	(whatever	it	is),	what	the	relative	error	in	that	speed	is	for	the	
actual	length	of	the	Alag,	which	is	both	measured	and	expected	to	be	d:	
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	–	
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𝑑"%&"'(")
𝑡"%&"'(")

=	

𝑑
0.77942𝑡"%&"'(")

	–	 𝑑
𝑡"%&"'(")

𝑑
𝑡"%&"'(")

=	
1

. 77942 − 1 = +.283		

	
This	is	the	same	answer	as	before.	
	
There	are	a	variety	of	incorrect	approaches	to	this	question.	We	list	below	the	most	
common	errors	that	have	been	observed	on	the	practicum:		

	
	 a.	Flag	length	relative	error:	&)*+,-°	–	&

&
	=	𝑐𝑜𝑠30°	– 	1	=	–13.4%	(–13%	to	2	sig	Jigs)	

Note	the	wrong	sign	–	the	Alag	indeed	appears	shorter	(negative)	but	the	
answer	should	result	in	higher	speed.	
	

	 b.	Missing	the	time	measurement	error:	
!

$%&'(°∆+	–	
!
∆+

!
∆+

	=	 %
)*+,-°

	– 1	=	+15.5%	

c.	Time	measurement	error:	
!

2.2$%&'(°∆+	–	
!
∆+

!
∆+

	=	 %
%.%)*+,-°

	– 1	=	+4.97%		

d.	time	measurement	error:	
$%&'(°!
(.4∆+ 	–	!∆+

!
∆+

	=	1.1𝑐𝑜𝑠30°	– 1	=	–4.74	%		

Note	the	wrong	sign	–	answer	should	result	in	higher	speed		 	 												
if	the	timer	reads	low.	

	
	 e.	incorrect:	±13%	error	on	Jlag	length	±	10%	error	on	timer	=	±23%	or	±3%	

	
f.	incorrect:	quadrature	calculation	 	
	

(13%)2 + (10%)2 = ±16.4%
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(e)	and	(f)	are	incorrect	for	the	same	reason.	Errors	cannot	be	summed	except	
in	cases	of	simple	addition	–	quadrature	must	be	invoked;	however,	even	
quadrature	is	incorrect,	because	this	is	NOT	an	uncertainty	propagation	
question!	This	is	an	estimate	of	a	one-sided	systematic	effect.	

	
	

Challenge	question:	suppose	the	timer	actually	measures	(incorrectly)	10%	
more	time	than	it	should	–	what	relative	error	in	speed	results?	
	
Answer:	for	a	value	of	f	=	1.1,	the	result	is	identical	to	example	(c)	in	the	
common	errors	list	above:	
	

Relative	speed	error	=	
!

2.2∗$%&'(°∆+	–	
!
∆+

!
∆+

	=	 %
%.%∗)*+,-°

	– 	1	=	+4.97%	(too	fast)	

	
The	take-home	message	here	is	two-fold.	First,	it	can	be	difAicult	to	distinguish	
between	a	careless	mistake	(“oh	when	you	said	10%	I	thought	it	was	1.1	instead	
of	0.9”)	and	a	systematic	effect.	An	even	more	important	observation	is	that	
measurements	in	an	introductory	physics	class	tend	not	to	be	very	accurate	–	a	
5%	uncertainty	is	quite	good	in	an	intro	class	and	could	easily	be	dismissed	as	
“probably	just	due	to	sloppy	measurement	technique.”	Be	careful	to	point	out	
the	possibility	of	systematic	effects	in	your	lab	reports	and	cite	speciAic	
potential	sources	of	systematic	error	in	your	lab	report	discussion.		
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XV.	Interpretation	of	Plotted	Data	
	
Students	connect	a	solenoid	to	a	variable	power	supply.	They	then	use	a	magnetic	
Jield	sensor	to	measure	the	magnetic	
Jield	strength	along	the	central	axis	at	
the	center	of	the	solenoid.	A	plot	of	
the	measured	magnetic	Jield	strength	
B	as	a	function	of	the	emf	ε	of	the	
power	supply	is	shown	to	the	right	
(error	bars	not	shown).	Theoretically,	
the	value	of	B	should	be	μ0nI,	where	n	
is	the	number	of	turns	per	unit	length,	
and	I	is	the	current.	
	
One	of	the	students	notes	that	the	
horizontal	component	of	the	magnetic	
Jield	of	the	Earth	is	2.5×10–5 T.	Is	there	
evidence	from	the	graph	that	the	
Earth’s	magnetic	Jield	systematically	
affected	their	measurement?	What	can	you	say	about	the	orientation	of	the	solenoid? 
	

The	theoretical	equation	for	the	magnetic	Aield	is	 	

	
where	ε	is	the	voltage	(emf)	applied	to	the	solenoid	and	R	is	the	resistance	of	
the	coil.	Therefore,	the	plot	of	B	vs	ε	is	expected	to	be	linear,	but	there	should	be	
no	magnetic	Aield	when	no	current	is	Alowing	through	the	solenoid	(that	is,	the	
y-intercept	should	be	zero	on	this	graph).	However,	it	is	not	difAicult	to	see	that	
the	plot	has	an	intercept	at	approximately	the	value	of	the	Earth’s	natural	
magnetic	Aield,	as	shown	in	red.	
	
Since	the	Earth’s	magnetic	
Aield	presumably	is	parallel	to	
the	surface	of	the	Earth	and	
appears	as	a	systemic	offset	in	
the	graph,	it	is	not	
unreasonable	to	conclude	that	
the	solenoid	was	detecting	the	
Earth’s	magnetic	Aield	and	
was	thus	oriented	
horizontally	during	this	set	of	
measurements.	
	
	

B = µ0n
ε
R
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XVI.	Combining	Type	A	and	Type	B	Uncertainties	I	
	
Refer	to	the	Combining	and	Reporting	Uncertainties	section	of	this	document,	in	
particular	the	discussion	of	Type	A	and	Type	B	uncertainties.	Let	us	reconsider	
Example	I	of	the	appendix.	Suppose	we	have	found	a	trustworthy	digital	balance	
with	a	precision	of	0.1	g,	and	its	measurement	of	a	mass	is	495.3	g	with	an	accuracy	
also	of	0.1	g	–	how	should	we	report	the	result?		
	

We	don’t	know	the	details	of	how	the	balance	comes	to	the	result	it	displays.	
Imagine	that	the	balance	has	an	extra	digit.	The	value	of	495.3	with	the	extra	
digit	could	be	anywhere	between	495.2-something	and	495.3-something	–	this	
is	the	effect	of	the	limited	precision	of	the	device,	and	we	don’t	know	how	the	
balance’s	microcontroller	programming	applies	rounding	rules.	Adding	the	
accuracy	into	the	mix	in	an	upper-lower	bound	sense	means	the	“true”	value	
could	be	anywhere	between	495.1-something	and	495.4-something.	In	an	
upper-lower	bound	sense	then,	we	would	most	safely	cite	this	as	493.3	±	0.2	g.	
	
In	contrast,	we	know	that	the	upper-lower	bound	is	an	overestimate,	because	it	
assumes	that	every	measurement	could	be	at	the	outer	limits	of	the	possible	
values.	This	assumption	is	not	typically	correct	(e.g.,	due	to	a	random	noise	
component).	A	better	approach	is	to	combine	the	precision	and	uncertainty	in	a	
sum-of-squares	(quadrature)	sense:	
	

	
	
Unfortunately,	we	are	faced	here	with	a	slight	conundrum.	Strict	rounding	rules	
would	allow	us	to	cite	this	as	0.1	g,	but	we	sometimes	make	exceptions	when	the	
leading	digit	is	1,	so	to	be	safe	we	might	cite	the	uncertainty	as	either	0.14	g	or	
0.2	g.	When	faced	with	this	issue,	you	should	explain	your	choice	(which	is	why	
we	always	ask	you	to	explain	your	answers!).	
	
Note	that	this	process	highlights	a	method	by	which	we	can	decide	if	and	when	
to	discard	either	the	precision	or	the	accuracy	as	a	contributor	to	the	answer.	
The	relative	contributions	of	precision	and	accuracy	are	quantitative	under	the	
radical.	If	the	square	of	either	is	signiAicantly	larger	or	smaller	than	the	other,	
it	can	be	ignored;	in	this	example,	neither	can	be.	See	the	examples	in	the	
Quadrature	section	of	this	document	for	more	discussion.		

	
	 	

(0.1 g)2 + (0.1 g)2 = 0.1414 g
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XVII.	Combining	Type	A	and	Type	B	Uncertainties	II	
	
A	student	uses	a	stopwatch	to	measures	three	instances	of	the	time	it	takes	a	ball	to	
fall	to	the	ground.	The	student	is	faced	with	the	following	uncertainties:	
	

1. The	stopwatch	itself	has	a	precision	of	0.01	s	(the	stopwatch	cannot	do	better	
than	0.01	s,	but	it	is	unknown	if	that	is	a	representation	of	how	accurate	the	
stopwatch	is,	or	merely	the	limit	of	the	display).		

2. The	standard	deviation	of	the	three	measurements	is	0.03	s.	This	uncertainty	
is	due	to	random	variations	in	the	execution	of	the	experiment	(Type	A).		

3. After	the	experiment	is	over,	the	student	realizes	that	they	did	not	carefully	
consider	or	try	to	correct	for	their	reaction	time	in	pressing	the	stopwatch	
start	and	stop	button.	After	some	research,	it	is	discovered	that	human	
reaction	times	can	be	as	large	as	0.2	sec	and	could	vary	by	10%	from	person	
to	person	or	from	event	to	event.	This	uncertainty	is	classiJied	as	systematic	
(Type	B).	

	
How	should	the	uncertainty	in	this	measurement	be	expressed?	

	
Note	 Airst	 that	 the	 reaction	 time	 likely	 affects	 both	 the	 start	 and	 the	 stop	 of	 the	
stopwatch;	therefore,	the	0.2	sec	“error”	due	to	reaction	time	is	not	likely	to	result	
in	a	signiAicant	uncertainty	in	the	elapsed	time	between	start	and	stop.	In	contrast,	
the	reaction	time	itself	can	vary	by	10%	of	this	value,	or	0.02	s.	
The	correct	approach	to	combining	these	separate	uncertainties	is	a	root	sum	of	
squares:	
	

total	uncertainty	=	:(0.01	𝑠)! + (0.03	𝑠)! + (0.02	𝑠)! 	= 0.037	𝑠	 = 	0.04	𝑠	(1	sig	Aig)		
	
Note	that	if	the	experiment	is	repeated	with	better	instruments,	more	trials,	or	a	
more	careful	control	of	the	systematic	effects,	any	of	the	uncertainty	contributions	
could	be	reduced	so	as	to	be	negligible	in	a	root-mean-square	sense.	
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XVIII.	Revisiting	the	Solenoid	
	
The	details	of	a	solenoid	experiment	are	shown	below:	
	

	
	

A	voltage	of	2.7	VDC	applied	to	the	solenoid	produces	a	current	of	1.00	A.	A	probe	
measures	the	magnetic	Jield	in	the	center	of	the	solenoid	as	4.716	±	0.004	mT	.	The	
voltage	and	current	measurements	have	an	accuracy	of	±	2.5%.	
	

Using	only	the	measured	current	and	magnetic	Aield	and	the	theoretical	
equation	for	the	magnetic	Aield	in	the	solenoid,	calculate	the	number	of	
windings	per	unit	length	and	its	uncertainty.	(Result	1).		
	

	𝑛 = ;
<(=

= >.?%@±-.-->	×	%-–'	C
(%.!E?×%-–6	F/1)(%.--±-.-,	I)

=	3752	±	119	per	meter	
	
This	result	is	an	upper-lower	bound;	from	a	quadrature	point	of	view,	the	
relative	uncertainty	in	n	is:	
	

𝜎J
𝑛 = ?@

𝜎;
𝐵 B

!
+ @

𝜎=
𝐼 B

!
= :(0.0008)! + (0.03)! = 0.03	

		
In	contrast	to	the	previous	example,	we	can	ignore	the	contribution	to	
uncertainty	from	the	Aield	measurement	because	it	is	much	smaller	than	the	
current	measurement	uncertainty.	The	result	is	σn	=	113	per	meter,	which	is	
smaller	(marginally)	than	the	upper-lower	bound	result,	as	expected.	
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Appendix	III.	Summary	of	Important	Tips	for	Uncertainty	in	PHYS	118/119	
	

1. Precision	and	accuracy	are	unrelated.	Precision	is	how	many	signiJicant	
Jigures	are	retained	in	any	value.	Accuracy	is	how	close	a	value	is	to	the	true	
value.	An	answer	can	be	very	precise	and	very	inaccurate.	Likewise,	an	
accurate	answer	may	or	may	not	be	precise.	Refer	to	the	discussion	
surrounding	Figure	1.		

2. The	uncertainty	in	a	measurement	has	the	same	units	as	the	measurement.	In	
contrast,	the	relative	uncertainty	is	a	ratio	of	the	uncertainty	to	the	measured	
value	and	is	expressed	as	a	percentage.	Refer	to	the	discussion	surrounding	
Equation	1.	

3. The	term	human	error	is	vague	and	should	be	avoided	in	discussions	or	
presentations.	Although	it’s	possible	that	a	measurement	was	incorrectly	
made,	such	an	error	is	a	form	of	systematic	uncertainty	and	should	be	
referred	to	as	such.		

4. An	average	of	several	values	(at	least	3	for	PHYS	118/119)	can	be	taken	as	
the	expected	or	measured	value	of	a	quantity.	Refer	to	the	discussion	
surrounding	Table	1.	

5. The	standard	deviation	of	several	values	(at	least	3	for	PHYS	118/119)	can	be	
taken	as	the	uncertainty	of	the	expected	or	measured	value	of	a	quantity	if	
there	is	no	knowledge	of	possible	systematic	effects.	If	systematic	effects	are	
known	to	have	been	eliminated,	the	standard	error	is	likely	to	be	a	better	
calculation	of	the	uncertainty.	Refer	to	the	discussion	surrounding	Table	2,	
Figure	2,	and	Figure	3.	

6. SigniJicant	Jigures	can	be	used	to	estimate	uncertainty,	but	PHYS	118/119	
requires	uncertainty	to	be	computed	as	a	separate	value.	If	you	are	
performing	your	own	experiments	with	limited	trials,	round	your	uncertainty	
to	1	sig	Jig	and	match	the	precision	of	the	measured	value	to	the	precision	of	
the	uncertainty.	Refer	to	the	discussion	surrounding	Table	2.		

7. If	you	are	working	on	an	exam	or	homework	problem	that	cites	uncertainty	
to	more	than	1	sig	Jig,	take	it	at	face	value	–	you	did	not	perform	that	
experiment!	

8. Upper-lower	bound	calculations	are	acceptable	for	uncertainty	propagation;	
however,	quadrature	calculations	are	more	elegant	and	more	statistically	
sound.	Quadrature-like	calculations	(root	sum	of	squares,	or	RSS)	are	
required	to	combine	uncertainties	from	different	sources,	especially	in	the	
following	two	cases:	

• combining	random	and	systematic	uncertainties.	
• combining	any	uncertainties	and	instrument	precisions.	

Refer	to	the	example	in	the	section	on	Combining	and	Reporting	Uncertainties.	
	

9. Unless	otherwise	directed,	always	attempt	to	linearize	data	so	that	a	linear	
regression	can	be	applied	to	Jind	a	slope,	intercept,	and	their	uncertainties.	Any	
other	approach	is	not	considered	best	practice	and	will	be	judged	as	inferior.	


