Elias Aydi- Michigan State University
Title: New insights into novae
Abstract:
Novae are panchromatic transients triggered by a thermonuclear runaway on the surfaces of white dwarf stars in interacting binaries. Our understanding of how novae are powered has been altered with the Fermi gamma-ray telescope establishing novae as bright GeV gamma-ray sources and thus a new class of particle accelerators in our Galaxy. This unexpected discovery underscores the complexity of novae and their value as laboratories for studying shocks and particle acceleration. In this talk I will highlight our ongoing multi-wavelength/multi-messenger efforts aimed at understanding how shocks work in novae. These efforts, harnessing a diversity of observations across the spectrum from space- and ground-based facilities, including SOAR, can help us probe critical but poorly understood physical processes, such as common envelope interaction, super-Eddington luminosities, particle acceleration efficiency, and dust formation around explosive transients, and are essential for a better understanding of other shock-powered transients in the Universe such as supernovae, stellar mergers, and tidal disruption events.